EEEEEEEE

Exor PLC+HMI Development Kit
User Manual

X =XON

EMBEDDED

Exor PLC+HMI Development Kit User Manua

History
Rev Date Description By
1.3 22/Jul/2015 - Added section 1.3, briefly explaining how to start building from N.O.

the Docker container.

- Section 3.3: solved an inconsistence between paths in
build instructions.

1.4 4/Apr/2016 - Updated references to new SD card image and JMobile 2.1 N.O.
- Chapter 4: add note on supported SD-cards. A capacity of at
least 4GB is required.

- Chapter 6: add note clarifying the purpose of the serial port,
serial protocols are not supported

1.5 24/May/2016 - Add references to usom01 and usomO03 based development kits. N.O.
- Chapter 1: add VirtualBox virtual machine references.
- Chapter 3: update to use Yocto 2.1 recipes.

1.6 5/Sep/2016 - Chapter 1: add instructions for installing VirtualBox VM from N.O.
OVA. Installing Vagrant is no more required.

- Chapter 5: add instructions for BSP deploy on eMMC

- Chapter 6: add some more informations, section 6.3 has now
more detailed instructions.

- Chapter 7: add instructions for expansion plugins

1.7 30/Jun/2017 - Chapter 4: update instruction for partitioning the SD-card N.O.
1.8 27/Sep/2017 - Add references to nsom01 based development kit. N.O.
- Chapter 3: update to use Yocto 2.3 recipes
1.9 18/Jun/2018 - Update for release 4.x, Yocto 2.4 N.O.
- Remove Docker instructions, now unsupported
1.10 5/Aug/2018 - Chapter 5: update instructions N.O.
Reference
Re(%gcr)esrfce Filename Description

(1]

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

=XON

EMBEDDED

Document contains

Author(s)

Functional Specs
Usability Specs

Techical Specs

Test Procedures
Technical Documentation
v | User Documentation

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Of fenders will be liable
for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved. Technical data subject to

change. Copyright © 2018 EXOR International S.p.A. - All Rights Reserved.

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

X =XON

EMBEDDED

TABLE OF CONTENTS

T. Title Getting STArteA ..o 6
1.7 Running the VIrtualBoOX VM ... 6
1.1.1 Setup a guest-host shared folder ... 7

1.1.2 Configuring the SDK ... 8

T.1.3 USING QECTEATON ... 8

1.1.4 Compiling the BSP With YOCTOcocooiiviioieeeeeeeeeeeee 8

2 The SAtO AESKEOD ..o 9
2.1 Network configuration ... 9

2.2 Start IMOobile from SAtO ... 10

3 Compiling Yocto BSP from SCratCh.ocoovoiieooieeeeeeeeeeeeee 11
3.1 Setup the build envirONMENTt ... 11

3.2 Optional CUSTOMIZAtIONS.........oovoiiiceeeee e 17

3.3 Compiling YOCTO BSP ... 12
3.3.1 Creating the SDK (0ptional)ccooovioiioeoeeeeeeeeeeeee e 12

4 BSP deploy ON SD-CArdccooiieoeoeooeeee e, 13
4.1 USING @ready iIMAGE oo 13
AT UNAEE LINUX o 13

4.71.2 UNEr WINAOWS ... 13

4.2 Using the SD-card installer (LinUX USErS ONlY)coovoiovieeeeeeeeeeeeeeee. 13

4.3 MaNUAIY ..o 14

5 BSP deploy ON EMMUO ..o 16
6 Setup the workspace for building applications ... 18
6.1 Cross development environment SETUD..........ocoooovovoiioioceeeeeeeeeeeeeeee . 18

6.2 Connecting to the deVICEo.oiieeeeeeeeeee e 18

6.3 QUCIEATON SETUP ...ovieeeee e 18
6.3.1 Application deploy ... 22

7 UsINg EXPanSIoN PIUGINS ... 24
7.7 Use PLCMOT plugin (CanbuS).......c.coovoooooeeeeeeeeeeeeeeeeeeee . 24
717 PlUQIn CONNECTION ..., 24

7.1.2 System configuration and PIUQIN USE...........cooeeoeiieeeeeeeeeeee 24

7.1.3 Canbus conneCtor (CN2)... ..o 25

7.2 Use PLCMO04 module (RS-422/485)ccoiooeoeoeeeeeeeeeeeeeeeeee . 25
721 PIUGIN CONNECTION ... 25

7.2.2 System configuration and PIUQIN USE..........ccocoeeieeeeeeeeeeeeee 26

7.2.3 EXAPIE C COUC ..o 26

7.2.4 RS485conneCtor (CN2) ..o 27

7.3 Use PLCMO05 module (Expansion module) ..o, 28
7.3.T SPIPIUGIN CONNECTION ..o 28

7.3.2 SPI System configuration and plugin USEccccooveveveeoeoceeeee 29

7.33 SPIEXample C COA@ ..o 29

7.34 CNA CONNECTON ..o 31

8 Upgrade FPGA firmware (USO2-Kit ONIY) ..o 32

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

X =XON

9 JMobile Portable rUNtiMEc.ooooeeeeeeee e 33
9.1 JMobile portable runtime installation ... 33
9.2 JMobile OpenHMI Studio quick start guideccovoooiiiiiieeeeeee 34
TO CODESYS V3 e 39
T0.TEnabling CODESYS FUNTIMIE ... 39
10.2Installing CODESYS DEVICESouiiiiiiiieeeeeeeeee e 39
10.3Creation of @ NeW PLC PrOJECT ..o 40
10.4Communication setup in the CODESYS softwareccocooovovovovoicicece. 40
11 Accessing PLC from IMODIIEoooiioooeeeeeeeeeeeeeeeeeeeeeeeee . 43
17.1C0desys ProjeCt CreatioN...........ccocovoviveeeeeeeeeeeeeeeeee e 43
11.2CDS3 protocol configuration on JMobile ..o 46

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

EMBEDDED

X =XON

EMBEDDED

1. Title Getting started

To work with the development kits a Linux operating system with a properly configured build
environment is required. The simplest way to get started, especially for Windows users, may be using
one of our development virtual machines. We provide a VirtualBox VM and a Docker container, both
are preconfigured with:

e Yocto workspace for building the BSP
e Preinstalled SDKs to start building your own application for the development kit
e QtCreator IDE with preconfigured target toolchains (Qt 5.9)

If you are already working on a Linux machine or you already have a Linux VM you may consider
configuring yourself the build environment instead. In this case skip this chapter and go to chapter 3
if you are interested in building the BSP or chapter 6 if you are interested in building your own
applications for the target.

1.1 Running the VirtualBox VM

You can download the Exor’s VirtualBox development VM from here:

http://download.exorembedded.net:8080/Public/VirtualBoxVMs

Instructions found on this document are compatible with versions 4.x of the VM. If you are about to
use a greater version please consider looking for an updated version of this manual.

The virtual machine comes in the OVA (Open Virtualization Archive) format. To import it on VirtualBox
got to “File” -> “Import Appliance...”, select the downloaded .ova file and then click “Import”. At this point
VirtualBox will give you the opportunity to customize the VM, double-click on entries to edit them.

You will notice there are two network adapters, one is set to work in NAT mode while the second one
works in bridged mode, the virtual machine will always use the bridged interface if possible and fall
back to the other only if necessary. Adjust both adapters to work with the real network interface you
use to have access to internet. Note that if the bridged adapter is not correctly configured you won't
be able to resolve the Kit hostname, its IP address has to be used in this case.

Appliance settings

These are the virtual machines contained in the appliance and the suggested settings of the
imported VirtualBox machines. You can change many of the properties shown by double-clicking
on the items and disable others using the check boxes below.

Description Configuration
Virtual System 1

?,3 Name ExorDev-VM

= Guest OS Type 7 Ubuntu (64-bit)

{3 crU 2

& rRAM 2048 MB

(¥ USB Controller

&) Network Adapter [~ Intel PRO/1000 MT Desktop (82540EM)

&) Network Adapter [~ Intel PRO/1000 MT Desktop (82540EM)
v § Storage Controller (SATA) AHCI

i Virtual Disk Image CAVirtualBox VMs\ExorDev-VM\ExorDev-VM-...

[] Reinitialize the MAC address of all network cards

Restore Defaults Cancel

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

X

=XON

EMBEDDED

The default amount of RAM is set to 2GB but if you plan working with Yocto we recommend to
increase it to at least 4GB (suggested 6GB), adjusting the number of CPU cores is also a good idea.
When you're done click on “Import”. Once finished importing you will be able to change VM settings

again.

o [, -
? ExorDev-VM [Running] - Oracle VM VirtualBox — O X

File Machine View Input Devices Help

‘* Applications Menu 7 helloworld - Qt Creator

c— 2 helloworld - Qt Creator
File Edit Build Debug Analyze Tools Window Help

helloworld

Edit The project hellowerld is not yet configured.
. Qt Creator uses the kit Desktop to parse the proje

Welcome

OGINGITENEGEesy | Editor | Code Style | Depe

B Select all kits

File System
Debug

y | Projects

v| B Desktop

T 3 us01-kit wayland

2 us01-kit x11

=,

Unconfig... 3 us02-kit
«ured

-

(Home
[—
L

3

2 us03-kit

Import Build From...

G & =@} (%] cTRL (DESTRA)

The Linux operating system used is based on Ubuntu 16.04, the default user is:

username: user
password: password

To run a command with root privileges you can use sudo, entering the password is not required.

1.1.1 Setup a guest-host shared folder

We recommend configuring a shared folder between host and guest, it's the easiest way to move files
from and to the VM. From VirtualBox right-click on Exor's VM and select “Settings...”. Now go to
“Shared Folders” and click on the add button to the right. Configure as follow:

Folder Path: choose the host folder to share with the virtual machine
Folder Name: must be share.

Read-only: leave unchecked.

Auto mount: leave unchecked.

Make Permanent: set checked.

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

X =XON

EMBEDDED

The chosen folder will be available inside the virtual machine from /home/user/vM-share, a link to this
location can be also found on the VM's desktop. If the VM was already running a restart will be

@

g, General Shared Folders

J_J System Folders List

Name Path Auto-mount Access | L

— Machine Folders €3 Add Share ? >
|::£J Storage Transient Folders:

=l Display

[H .
1'.] Audio Folder Path: | <not selected> v|

Folder Name: |share |

[] Read-only
f}: Serial Ports [] Auto-mount

}}K USE Make Permanent

E!' Network

D Shared Folders

0K Cancel
%] UserInterface

required.

1.1.2 Configuring the SDK

To reduce the initial weight of the VM the SDK is not shipped with it. Scripts named “Install [..]
SDK.sh” can be found on the desktop, by just executing these with a double-click it's possible to
automatically download and install the required SDK files for each device.

During installation QtCreator will be reconfigured, if found running it will be automatically closed
during the process.

1.1.3 Using QtCreator

The QtCreator IDE is already installed and configured to deploy and debug applications for each
development kit. When creating a new project make sure to select the kit configuration for your device,
if not available make sure that the corresponding SDK has been installed using one of the scripts that
can be found on the desktop. There's also a “Desktop” kit configuration which can be used to build
your application and run it on the virtual machine instead of deploying it, useful for fast testing and
heavy profiling.

You will find a helloworld sample project in /home /user/helloworld, open it with QtCreator, compile
it for your platform and press ctr1+r, a window will pop up in the development kit.

You can find more details about configuring QtCreator in section 6.3, in particular how to change the
hostname or IP address of the target device.

1.1.4 Compiling the BSP with Yocto

Inside /home/user/exor-yocto-4.0 you will find the preconfigured Yocto workspace for building the
BSP for your development kit. As we do not update our development virtual machines as often we do
with our Yocto recipes you may want to update the meta-exor layer before starting the build:

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

X =XON

EMBEDDED

$ cd /home/user/exor-yocto-4.0/git/meta-exor
$ git checkout rocko
$ git pull

Go to chapter 3 to go ahead compiling the BSP.

2 The Sato desktop

The development kit will boot with the default Yocto SATO interface. The machine is
configured to run as root user and an ﬁ empty password

2.1 Network configuration

By default network configuration is done using a DHCP service. To change this and set a static IP
click on the Ethernet icon on the right top of the screen and choose “Preferences”.

Desktop

| e ﬁ ’
. Chromium _ Fotowall JMobhile croreTrey el
4 Access the Internet

X11VNC Server
Share this deskio. ..
1

Photo collection c. .. Start JMohile Funt... Play your favourit. ..

Here, in “Connection Preferences”, choose “Ethernet” from thee Services list and select “MANUAL”
under “Configuration”. Now you can fill in your network configuration. To do this you can toggle the
on-screen keyboard or just plug-in a real USB keyboard. Rememer to click on “Apply” when you are
done.

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

Connection Preferences

=XON

EMBEDDED

System Configuration

Wired Networks

Configuration’ [MANUAL

IP address: [|
Metmask: [
Gateway: [

L S R . —

Apply

2.2 Start JMobile from Sato

Close

By default, among other applications, a portable version of JMobile Runtime is installed. To launch the
HMI just click on the JMobile icon you will find in the “Applications” menu in Sato. A demo project is
already loaded for evaluation purpose. As the Runtime is meant to run by his own on the system the

Sato user interface will be terminated.

To close JMobile and return to Sato you can both reboot the board or kill the HMI by issuing the

following command from an ssh session:

$ killall xinit

ID No. UM-0012 - REV. 1.10

©2018 EXOR Embedded S.r.l. - Subject to change without notice

10

X

=XON

EMBEDDED

3 Compiling Yocto BSP from scratch.

3.1

Setup the build environment

If you are using Exor’s VirtualBox VM you can skip the first two steps: you will find the exor-yocto-4.0
folder already in the user's home (/home /user/exor-yocto-4.0).

1.

Create a workspace directory structure:

$ mkdir -p exor-yocto-4.0
$ cd exor-yocto-4.0/

Get the source code from github repositories:

$ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > repo
$ chmod a+x repo

$./repo init -u https://github.com/ExorEmbedded/exor-bsp-platform -b rocko

$./repo sync

Setup the Yocto environment. From the exor-yocto-4.0 folder execute:

$ source git/yocto-poky/oe-init-build-env build

You should now find yourself in a newly created “build” directory located in exor-yocto-
4.0/build. The source command above

Configure Yocto by copying the provided sample configuration files. From the the build
directory:

S cp ../git/meta-exor/conf/bblayers.conf.sample conf/bblayers.conf
$ cp ../git/meta-exor/conf/local.conf.sample conf/local.conf

Now edit your conf/local.conf and set the Macuing variable to uso1-kit, us02-kit (AlteraKit),
us03-kit Of ns01-kit. For example:

MACHINE = "us02-kit"

You are now ready to build the BSP.

3.2

Optional customizations

Here are some customizations you may be interested in:

You can force Yocto to build a 32-bit SDK uncommenting the following line in the
build/conf/local.conf file:

#SDKMACHINE ?= "i686"

Uncomment following lines in the build/conf/1ocal . conf file to be able to set the number of
threads and CPU cores you want to use for the build process:

#BB_NUMBER THREADS 2= "4"
#PARALLEL MAKE 2= "-j 4"

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

11

X

3.3 Compiling Yocto BSP

Make sure to run following commands from your “build” folder:

1. Compile the bootloader:

=XON

EMBEDDED

S bitbake bootloader

2. The xloader (for the us01-kit only):

S bitbake xloader

3. The Linux kernel:

S bitbake virtual/kernel

4. And finally the rootfs:

$ bitbake core-image-exor-x11

This will build the classic x11 sato image, the one that can be found in the SD-card included

with the development kit.

At the end of these operations you will find build output files in build/tmp/deploy/images/usom0X:

us0X-kit-uboot.tar.gz Contains
us0X-kit-xloader.tar.gz Contains
us0X-kit-kernel.tar.gz Contains
core-image-exor-[..]-us0X-kit.tar.gz Contains
us0X-kit-xloader.tar.gz Contains
us0X-kit-kernel.tar.gz Contains
core-image-exor-[..]-us0X-kit.tar.gz Contains

the
the
the
the

the
the
the

U-Boot raw image
xloader raw image
kernel zImage and
rootfs

xloader raw image
kernel zImage and
rootfs

(usom01 only)
the dtb

(usom01 only)
the dtb

3.3.1 Creating the SDK (optional)
Start the SDK build for the x11 image:

$ bitbake -c populate sdk core-image-exor-x11

The SDK installer can be found in build/tmp/deploy/sdk/exor-evm-gt5-sdk. sh.

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

12

X =XON

EMBEDDED

4 BSP deploy on SD-card

This section describes how to prepare a bootable SD-card for the evaluation Kit, for this remember
that only SD-cards with at least 4GB of space are supported.

Also note that following operations can be dangerous, harm your system or cause loss of data. Do
not blindly execute these operations if you don’t know what they actually do.

For Linux users we will assume below the SD-card device is named /dev/sdb and its partitions
/dev/sdbX, change these to the actual names.

4.1 Using a ready image

We provide a fully working 4GB image containing the x11-sato environment to let you start using the
kit in no time. Note that by using this option, even with a more capable SD, only ~4GB of space will
be available to the system.

Download the latest disk image for your evaluation kit:

USOlkit images: http://download.exorembedded.net:8080/Public/usom0l/sdcard-images/
USO2Kit images: http://download.exorembedded.net:8080/Public/usom02/sdcard-images/
USO3Kit images: http://download.exorembedded.net:8080/Public/usom03/sdcard-images/
USO1Kit images: http://download.exorembedded.net:8080/Public/nsom01l/sdcard-images/

4.1.1 Under Linux

From a Linux shell:

unzip SDcard-image-4gb.zip
dd if=SDcard-image-4gb.img of=/dev/sdb bs=64k
sync

Your SD-card is now ready to be used on the development kit.

4.1.2 Under Windows

Download Win32Disk|mager from http://sourceforge.net/projects/win32diskimager/. From the
user interface of Win32Disklmager select the extracted .img image file and the SD-card drive and
press “Write”.

*. Win32 Disk Imager
Image File Device
=) I
] MDs Hash:
Progress

Cancel Read Write

Waiting for a task.

4.2 Using the SD-card installer (Linux users only)

If you want to take advantage of all your SD-card space or you have built by your own some
components you want to deploy, it's also possible to use a SD-card installer script:

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded Sr.I. - Subject to change without notice

13

X =XON

EMBEDDED

S wget http://download.exorembedded.net:8080/Public/utils/mkSDTool/mkSDTool-v4.0.sh —-O mkSDTool.sh
$ sudo chmod +x mkSDTool.sh
$ sudo ./mkSDTool.sh --machine [us01-x11|usOl-wayland|us02|us03|ns01l] --device /dev/sdb

By default the script will deploy on your SD-card all the necessary files by downloading the needed
components from following locations:

USO1lkit: http://download.exorembedded.net:8080/Public/usom01/
US02kit: http://download.exorembedded.net:8080/Public/usom02/
USO03kit: http://download.exorembedded.net:8080/Public/usom03/
NSO1lkit: http://download.exorembedded.net:8080/Public/nsom01/

If you want to provide yourself one or more of these components you can take advantage of
following options supported by the mkSDTool script:

--rootfs <path/to/my/rootfs.tar.gz>

--kernel <path/to/my/kermel.tar.gz>

--uboot <path/to/my/u-boot tar.gz>

—-xloader <path/to/my/xloader.tar.gz> (only for us01)

43 Manually
1. Create the SD-card partition layout :

umount /dev/sdb*

SIZE="fdisk -1 /dev/sdb | grep —-ml Disk | awk '{print $5}'°
CYLINDERS=S (($((S$SIZE)) / 255 / 63 /512))

sfdisk —--force -D -H 255 -S 63 -C SCYLINDERS /dev/sdb << EOF
1,5

6,$((SCYLINDERS - 10))

$((SCYLINDERS - 4)),,a2

EOF

mkfs.vfat -n BOOT /dev/sdbl

mkfs.ext4 -L ROOT /dev/sdb2

H= o S

H= =

2. Mount partitions. Execute following operations:

// Mount partitions if not already mounted

mkdir /media/BOOT
mount /dev/sdbl /media/BOOT
mkdir /media/ROOT
mount /dev/sdb2 /media/ROOT

oW =

Now the actual deploy phase depends on the specific board. Make sure to follow the
appropriate steps:

// Deploy files to SD-card for us0l-Kit

mkdir /media/BOOT/boot

tar xzvf usOl-kit-kernell..].tar.gz --no-same-owner -C /media/BOOT/boot
tar xzvf usOl-kit-bootloader.tar.gz —--no-same-owner -C /media/BOOT

tar xzvf usOl-kit-xloader.tar.gz —--no-same-owner -C /media/BOOT

tar xzvf core-image-exor-[..].tar.gz -C /media/ROOT

sync

// Deploy files to SD-card for us02-kit

tar xzvf us02-kit-kernel.tar.gz --no-same-owner —-C /media/BOOT
tar xzvf core-image-exor-[..].tar.gz -C /media/ROOT

tar xzvf us02-kit-uboot.tar.gz

dd if=u-boot.img of=/dev/sdb3 bs=64k seek=4

sync

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

14

X =XON

EMBEDDED

// Deploy files to SD-card for us03-kit

mkdir /media/BOOT/boot

tar xzvf us03-kit-kernel.tar.gz --no-same-owner —-C /media/BOOT/boot
tar xzvf core-image-exor-[..].tar.gz -C /media/ROOT

tar xzvf us03-kit-uboot.tar.gz

dd if=u-boot.imx of=/dev/sdb bs=1k seek=1

sync

// Deploy files to SD-card for ns0l-kit

mkdir /media/BOOT/boot

tar xzvf nsOl-kit-kernel-[..].tar.gz —--no-same-owner -C /media/BOOT/boot
tar xzvf core-image-exor-[..].tar.gz -C /media/ROOT

tar xzvf nsO0l-kit-uboot[..].tar.gz

dd if=u-boot.imx of=/dev/sdb bs=1k seek=1

sync

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

15

X =XON

EMBEDDED

5 BSP deploy oneMMC

This section describes how to deploy the BSP on eMMC and boot from it. All the kits have the
possibility to boot without an SD-Card except for the us03-kit.

On the iIMX6Q the location where the bootloader needs to loaded is defined by OTP fuses that on
the us03-kit are already set to use the SD-Card. Once the bootloader is loaded into ram the roots
used will still be the one on the eMMC and the SD-card could be removed. For more information
on OTP fuse programming please refer to NXP processor reference manual (chapter 5 Fusemap
and chapter 46 On-Chip OTP Controller):

https://www.nxp.com/docs/en/reference-manual/IMX6DQRM.pdf

To deploy the BSP to the internal eMMC it is required to define the partition layout and then modify
the bootloader environment in order to inform the u-boot on where to look for all the necessary files.
Here, for demonstration purposes, we will use the simplest layout, a single ext4 partition. Following
instructions needs to be executed on the development kit via ssh, it requires you have a working SD-
card and these files available on it:

e The bootloader image, uboot . img.

[TherOOﬁS,core—image—exor.tar.gz

e Kernel and dtb or a xernel.tar.gz containing both.

Here are the steps to follow:
1) Reformat the eMMC device to have a single partition and create the ext4 filesystem. The

eMMC device is defined as /dev/mmeb1k1 on all the development kits except for the us02-kit
where it's /dev/mmeb1k0, for this reason the operation is slightly different for the latter.

// Format eMMC and mount rootfs partition for us0l-kit, us03-kit and ns0l-kit
umount /dev/mmcblklp*

SIZE="fdisk -1 /dev/mmcblkl | grep -ml Disk | awk '{print $5}'"
CYLINDERS=$(($(($SIZE)) / 255 / 63 /512))

echo -e "o\nn\np\nl\n2\n\nw" | fdisk -H 255 -S 63 -C SCYLINDERS /dev/mmcblkl
mkfs.ext4d /dev/mmcblklpl

mkdir emmc

mount /dev/mmcblklpl emmc

H= = =

// Format eMMC and mount rootfs partition for us02-kit

umount /dev/mmcblk0Op*

SIZE="fdisk -1 /dev/mmcblkO | grep -ml Disk | awk '{print $5}'"
CYLINDERS=S$ (($((S$SIZE)) / 255 / 63 /512))

echo -e "o\nn\np\nl\n2\n\nw" | fdisk -H 255 -S 63 -C SCYLINDERS /dev/mmcblkO
mkfs.ext4d /dev/mmcblk0Opl

mkdir emmc

mount /dev/mmcblkOpl emmc

B T

2) Deploy rootfs and kernel. Make sure at the end emmc/boot contains both a zimage and a dtb.

tar xzvf core-image-exor.tar.gz -C emmc
tar xzvf kernel.tar.gz -C emmc/boot // Or just copy zImage and dtb to
emmc/boot # sync

3) Deploy the bootloader. Again, this is platform dependent.

// Deploy bootloader on eMMC for us0l-kit
echo 0 > /sys/block/mmcblklboot0O/force ro
dd if=u-boot.img of=/dev/mmcblklboot0 bs=512 seek=0

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

16

X =XON

EMBEDDED

// Deploy bootloader on eMMC for us02-kit
echo 0 > /sys/block/mmcblk0Oboot0/force ro
dd if=u-boot.img of=/dev/mmcblk0boot0 bs=512 seek=0

// Deploy bootloader on eMMC for us03-kit and ns0l-kit
dd if=u-boot.imx of=/dev/mmcblkl bs=512 seek=2

Now if you remove the SD-card the bootloader written to the eMMC will be executed (except for the
us03-kit, see the note at the beginning of this chapter) but the system won't boot because the u-
boot will still look for files inside the SD-card.

To make it work the bootloader environment must be changed. To do this connect to the kit's serial
port using a client like putty and while keeping pressed Ctrl+C on the console power off and then on
the device. A prompt should appear.

From here execute these commands:

// U-boot environment changes for usO0l-kit, us03-kit and nsO0l-kit

setenv mmcboot 'run findfdt; mmc rescan; ext2load mmc 1:1 ${loadaddr} /boot/zImage;
ext2load mmc 1:1 ${fdtaddr} /boot/${fdtfile}; setenv mmcroot /dev/mmcblklpl; run
mmcargs; bootz S{loadaddr} - S${fdtaddr};"

saveenv

// U-boot environment changes for us02-kit

setenv mmcroot /dev/mmcblkOpl

setenv mmcloadcmd ext2load

setenv bootimage /boot/zImage

setenv fdtimage /boot/socfpga.dtb

setenv mmcload "mmc rescan; ${mmcloadcmd} mmc 0:${mmcloadpart} ${loadaddr}
S{bootimage}; S${mmcloadcmd} mmc 0:${mmcloadpart} S${fdtaddr} ${fdtimage}"

saveenv

H= e = =

To restore the bootloader's environment and boot again from SD-card stop the machine at the u-boot'’s
prompt again and type:

env default -a
saveenv

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

17

X =XOXN
6 Setup the workspace for building applications

This section describes how to setup a 64bit Linux PC or virtual machine to be able to build applications
for the target development kit. Our virtual machine and our Docker image are already preconfigured
and ready to use, these steps can be skipped when using one of these solutions.

6.1 Cross development environment setup
Download the latest v4.x SDK from here:

USO1lkit: http://download.exorembedded.net:8080/Public/usom01/SDK
USO2kit: http://download.exorembedded.net:8080/Public/usom02/SDK
USO3kit: http://download.exorembedded.net:8080/Public/usom03/SDK
NSOlkit: http://download.exorembedded.net:8080/Public/nsom01/SDK

Execute the SDK installation file exor-evm-gt5-sdk. sh (requires admin privileges):

$ cd /opt
$ sudo chmod a+x ./ exor-evm-gt5-sdk.sh
$ sudo ./exor-evm-gt5-sdk.sh

You will be asked for the installation directory, press enter to use the default, /opt/exorintos/2.3.2.
To setup the cross development environment for the current shell run this command (correct the
path if you have changed the default installation directory):

// Environment setup for us0l-kit
$ source /opt/exorintos/2.3.2/environment-setup-cortexa8hf-vfp-neon-poky-linux-gnueabi

// Environment setup for us02-kit and us03-kit
$ source /opt/exorintos/2.3.2/environment-setup-cortexa9hf-vfp-neon-poky-linux-gnueabi

// Environment setup for ns0l-kit
$ source /opt/exorintos/2.3.2/environment-setup-cortexa7hf-vfp-neon-poky-linux-gnueabi

To build a simple hello world application use the arm cross compiler that should now be reachable
from your PATH:

$ arm-poky-linux-gnueabi-gcc main.c -o hello world

6.2 Connecting to the device

On each device a console is active over serial port for debugging purposes. An ssh server is also
running, useful for having a shell over ethernet or transferring files via sftp. In both cases the username
to use is root, N0 password is required.

If your system has an avahi client installed the kit can also be addressed by its hostname:

USOlkit: exorUSOlkit.local
US02kit: exorUS02kit.local
US03kit: exorUS03kit.local
NSOlkit: exorNSOlkit.local

6.3 QtCreator setup

When developing Qt applications it may be usefull to have the Qt IDE preconfigured to use the
toolchain. You can get latest QtCreator package from DIGIA here:
ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded Sr.I. - Subject to change without notice
18

X

=XON

EMBEDDED

http://download.qgt.io/official releases/gtcreator/3.3/3.3.2/gt-creator-opensource-linux-
x86-3.3.2.run

Install it in your machine:

$ sudo chmod a+x ./gt-creator-opensource-linux-x86-3.3.2.run
$./gt-creator-opensource-linux-x86-3.3.2.run

You will find gtcreator installed in ~/gtcreator-3.3.2. Start it:

$ ~/gtcreator-3.3.2/bin/gtcreator

We are now going to setup the QtCreator build kit for the target.
From Tools menu select “Options..." -> “Build & Run”, then follow these steps:

1) Inthe “Compilers” tab click on “Add” -> “GCC” -> “C" and select the cross compiler picking it

from the SDK installation folder. If the SDK has been installed in the default location the
correct path is: /opt/exorintos/2.4.2/sysroots/x86 64-pokysdk-
linux/usr/bin/arm-poky-linux-gnueabi/arm-poky-linux-gnueabi-gcc
Optionally edit “Name” to give a more meaningful name for the entry, select “arm-linux-
generic-elf-32bit” as ABI and finally click “Apply”.

From the same tab now click “Add” -> “GCC" -> “C++" and select
/opt/exorintos/2.4.2/sysroots/x86 64-pokysdk-linux/usr/bin/arm-poky-linux-
gnueabi/arm-poky-linux-gnueabi-g++ instead. Again, select “arm-linux-generic-elf-32bit”
as ABI and click “Apply”

. Options ®
Filter Build & Run
@ Environment “ | General Kits | QtVersions | Compilers Debuggers CMake
Text Editor Name Type Add -
. ~ Auto-detected
@ FakeVim GCC (%86 32bit in jusr{bin) GCC Clone
@ ~ Manual =
Help ExorAlteraKITGCC GCC emove
{J c+e
/_J Qt Quick
0,‘ Build & Run
@ Debugger
B8 Analyzer
=Ty . Name: ExorAlterakITGCC
Version Control
d‘ Android Compiler path: sysroots/i686-pokysdk-linuxjusr/bin/arm-poky-linux-gnueabi/arm-poky-linux-gnueabi-gcc | Browse...
[ndroi
Platform codegen flags:
e BlackBerry
Platform linker flags:
sarc QNX
ABL: arm-linux-generic-elf-32k -
i Devices
B mne boctina |7

3)

From “Debuggers” tab press “Add” and select gdb from the same directory. The default
location is: /opt/exorintos/2.4.2/sysroots/x86 64-pokysdk-linux/usr/bin/arm-
poky-linux-gnueabi/arm-poky-linux-gnueabi-gdb .

Optionally edit “Name”, then click “Apply”.

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

19

http://download.qt.io/official_releases/qtcreator/3.3/3.3.2/qt-creator-opensource-linux-x86-3.3.2.run
http://download.qt.io/official_releases/qtcreator/3.3/3.3.2/qt-creator-opensource-linux-x86-3.3.2.run

X

2
| Filter

@ Environment

Text Editor
% FakeVim

@ Help

{} o+

] at quick

Q Debugger

B8 Analyzer

i“i Version Control
i) Android

e BlackBerry

sa QNX

n Devices

= I,

=XON

EMBEDDED

Options X
Build & Run

General Kits Qt Versions Compilers Debuggers CMake

Name Path
Auto-detected
* Manual

ExorAlterakITGDB /opt/poky/1.5.3/sysroots/i686-pokysdk-linuxfusr/binj/arm-poky-linux-gnueabi/arm-

Add

4 r

OK Cancel Apply

4) From “Qt Versions” tab, press “Add..”. The default path to select is:

/opt/exorintos/2.4.2/sysroots/x86 64-pokysdk-linux/usr/bin/gmake. QtCreator

should automatically recognize the gt version selected. Press “Apply”.

. Options
Filter Build & Run
@ Environment General Kits Qt Versions Compilers Debuggers CMake
Text Editor Name gmake Location
Auto-detected
% FakeVim « Manual

A Qt 4.8.5 (ExorAlteraklT) [fopt/poky/1.5.3/sysroots/i686-pokysdk-linuxjusr/bin/gmake

@ Help
{J c++

v] Qt Quick

0* Build & Run

@ Debugger

[E® Analyzer
Dl .
Version Control
) Version name: | Qt %{Qt:Version} (ExorAlterakIT)
i)l Android
gmake location: Jopt/poky/1.5.3/sysroots/i686-pokysdk-linux/usr/bin/gmake Browse...
@ BlackBerry
ABI detection failed: Make sure to use a matching compiler when building.
sae QNX No gmlviewer installed.
i Devices Qt version 4.8.5 for Desktop Details ¥
(=S '

Cancel

p——

Add...

Remove

Apply

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

20

X

=XON

EMBEDDED

5) This step is required for configuring automatic application deploy on the target.
Move from “Build & Run” section to “Devices”. Click “Add..", select “Generic Linux Device” and
press “Start Wizard”. Fill in these informations:

e Name: the device name, for example, us01-kit.

e Host name:

USOl-kit:
US02-kit:
US03-kit:
NSOl-kit:

exorUSOlkit.local
exorUS02kit.local
exorUS03kit.local
exorNSOlkit.local

e Username: root.

e Authentication type: set to “Password”.
e User's password: leave empty, no password is needed.

Click “Next” and then “Finish”. Qt Creator will attempt a test connection, if the device is already
powered on and reachable everything should be ok.
If for any reason you cannot reach the target by its hostname make sure avahi is installed on
your system or edit “Host name” to set the actual board IP address instead. Press on “Test”

button to check the connection again.

Filter Devices
() environment Devices
Text Editor Device: | ExorAlterakIT (default for Generic Linux)
% FakeVim General
@ Help
Name: ExorAlterakiT
{} et Type: Generic Linux
| at quick Auto-detected: No
i Current state: Unknown
|Q};. Build & Run
Q Debugger Type Specific
B8 Analyzer Machine type: Physical Device

Authentication type: ® Password

Dﬁ Version Control

Host name: exoralterakit.local
i)' Android -

Free ports: 10000-10100
@ BlackBerry

Username: root
san QNX

Password:
@ Code Pasting
. GDB server executable: Leave empty to lo...
f Designer

key

Options x
- Add...
Remove
Test
Show Running Processes...
Deploy Public Key...

SSH port: | 22 =
Timeout: | 10s =

Show password

Create New...

Cancel

—

Apply

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

21

X

=XON

EMBEDDED

6) Finally move again to “Build & Run” section, “Kits” tab. Combine all pieces together in a new
kit. Click “Add” and fill in as follows:

e Name: choose a name for the kit.

e Device Type: select “Generic Linux Device”.

o Device: select the device configured in 5).

e Sysroot: if the SDK is installed in the default location, these are the paths to select:
USO1l-kit: /opt/exorintos/2.4.2/sysroots/cortexa8hf-neon-poky-linux-gnueabi
US02-kit: /opt/exorintos/2.4.2/sysroots/cortexadhf-neon-poky-linux-gnueabi
US03-kit: /opt/exorintos/2.4.2/sysroots/cortexadhf-neon-poky-linux-gnueabi
NSOl-kit: /opt/exorintos/2.4.2/sysroots/cortexa’hf-neon-poky-linux-gnueabi

e Compiler: select C and C++ compilers by name as configured in 1) and 2).

e Debugger: select debugger by name as configured in 3).

e Qtversion: select gt version added in 4).

W Options x
Filter Build & Run k
(B environment General | Kits | QtVersions = Compilers = Debuggers = CMake
Text Editor Name Add
{8 Fakevim - ';L;t,:::rtemd Clone
@ vep Remove
{} C++
| ot Quick
@ Debugger Name: ExorAlteraKIT [}
[E@ Analyzer File system name:
Version Control i e Generic Linux Device -
IQI Android Device: ExoralteraKIT (default for Generic Linux) * | | Manage...
@ BlackBerry Sysroot: Jfopt/poky/1.5.3/sysroots/cortexa9hf-vfp-neon-poky-linux-gnueabi Browse...
sanx QNX Compiler: ExorAlterakITGCC = || Manage...
n Devices Environment: No Changes to apply Change ...
Code Pasting Debugger: ExorAlterakITGDB ~ || Manage...
A Designer Qt version: Qt 4.8.5 (ExorAlteraKIT) ~ || Manage...
Qt mkspec:
[ok || cancel Apply
6.3.1 Application deploy

Before starting here, make sure QtCreator has been correctly configured for application deployment
and that the development kit is reachable.
1) First, let's create a dummy Qt project. Select “File” -> “New File or Project..” -> "Qt Widgets
Application” and click “Choose”. Enter a project name, press “Next”. Make sure that in the “Kit
Selection” wizard dialog the SDK kit for the target is selected.

2) Make sure the target kit the one currently in use by checking in the menu on the left shown

below:

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

22

Project: TestApplication
Deploy: Deploy to Remote Linux Host
Run: TestApplication (on Remote Device)

Kit Build
Desktop Debug

Exor-50K Release

[N © Type to locate (Ctrl+K) 1 Issues

3) Now edit the .pro project file to add these two lines:

=XON

EMBEDDED

target.path = /home/root/
INSTALLS += target

This will define where the application will be installed on the device (/home/root)

(oL TestApplication.pro @ TestApplication - Qt Creator
File Edit Build Debug Analyze Tools Window

Help

Projects + T =
- L Testapplication |
B Testapplication.pro
* [nl Headers
k. mainwindow.h

* [Sources

E. TestApplication.pro =

g main.cpp
= mainwindow.cpp SOURCES +;.1"
~ [Forms ma1ln.1?pp \
mainwindow.cpp

» mainwindow.ui

HEADERS += \
mainwindow.h

FORMS += \
mainwindow.ui

Target deploy support:
target.path = fhome/root/
INSTALLS += target

39

You can also make your code fail to compile if you
In order to do so, uncomment the following line.
You can also select to disable deprecated APIs only
#DEFINES += (QT_DISABLE_DEPRECATED_BEFORE=0x060000

4) Finally press the green "play” button in the menu on the left or use the “Ctrl+R" shortcut.
QtCreator should compile the application and an empty Qt window should appear on the

device.

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

23

X =XON

EMBEDDED

7 Using Expansion Plugins
7.1 Use PLCMO1 plugin (Canbus)

7.1.1 Plugin connection

The PlcmO01 can be plugged in every plugin connector.
If you connect the Plcm01 on the connector “Plugin 1" the system provide the Can0 interface.
If you connect the Plcm01 on the connector “Plugin 2" the system provide the Can1 interface.

PLUGIN 2 PLUGIN 1 =

7.1.2 System configuration and Plugin use

Once connected the plugin you can power-up the development kit and wait the booting process.
With the following system command you can:

e Set the caninterface

ip link set can0 up type can bitrate 250000

e [Enable the can interface

ifconfig canO up

e Send can packet

cansend can0O -i 0x1A5 0x01 0x23 0x45 0x67 0x89 OxAB 0xCD OxEF

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

24

X =XON

EMBEDDED

e Received can packet

candump canO

7.1.3 Canbus connector (CN2)

PlcmO1 is equipped with a standard male DB9 canbus connector.

J

CANH

o |~ |00 |

CANL

- o[|a fo
h5556

o+Z
ot L
O

O_

&

7.2 Use PLCM04 module (RS-422/485)
7.2.1 Plugin connection

The Plcm04 can be plugged in every kit plugin connector.
If you connect the Plcm04 on the connector “Plugin 1" the system provide the ttyS1 interface.
If you connect the Plcm04 on the connector “Plugin 2" the system provide the ttyS2 interface.

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

25

X =XON

EMBEDDED

ALO2_1014

18.09.2014

INTERNATIONAL|

Copyright® 2014
[} 3

RS422/485

7.2.2 System configuration and Plugin use

Once connected the plugin you can power-up the development kit and wait the booting process. The
system is just configured to use this module, and you can read/write on the serial port.

7.2.3 Exaple C code

Here a simple example writed in C:

#include <stdio.h>

#include <stdlib.h>

#include <sys/ioctl.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <linux/serial.h>
#include <asm-generic/termbits.h>
#include <string.h>

#include <signal.h>

/* Driver-specific ioctls: */
#define TIOCGRS485 0x542E
#define TIOCSRS485 0x542F

#define MSG_LENGTH 255
#define HELLO WORLD "Hello from Exor uS02 kit\n"

#define SERIAL PORT PLUGIN 1 "/dev/ttyS1"
#define SERIAL PORT PLUGIN 2 "/dev/ttyS2"

/*

* SELECT USED PORT

*/

#define SERIAL PORT SERIAL PORT PLUGIN 2

int main(int argc, char const *argv[])

{

int i, fd, ret=0;

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

26

X =XON

EMBEDDED

struct serial rs485 rs485conf;
unsigned char b[MSG LENGTH], c[MSG LENGTH];

fprintf (stdout, "Start!\n");
fprintf (stdout, "Open open port %s...!", SERIAL PORT);
fd = open(SERIALiPORT, OiRDWR);
if (fd < 0) {
perror ("Open device failure');

return -1;
}
fprintf (stdout, " done!\n");
fprintf (stdout, "Enable RS485 mode...");

if (ioctl(fd, TIOCGRS485, &rs485conf) < 0) {
perror ("ioctl failure");
return -7 ;

}
rs485conf.flags = SER RS485 ENABLED | SER RS485 RTS ON SEND;
if (ioctl(fd, TIOCSRS485, &rs485conf) < 0) {
perror ("ioctl failure");
return -3;
}
fprintf (stdout, " done!\n");

//Set custom or std baudrate
struct termios2 tio;
ioctl(fd, TCGETS2, &tio);
tio.c_cflag &= ~CBAUD;

tio.c_cflag |= BOTHER;
tio.c_ispeed = 115200;
tio.c_ospeed = 115200;

ioctl(fd, TCSETS2, &tio);

write(fd, HELLO WORLD, strlen(HELLO WORLD));
while(strncmp (b, "exit", 4))

{

fprintf(stdout, "Waiting data on %s \n", SERIAL PORT);
memset (b, 0, sizeof(b))

ret = read(fd, b, sizeof(b));

printf("Data received: %s\n", b);

strcpy(c, "uS02 send: \t");
strcat(c, b);

write(fd, c, strlen(c));
printf("Data sendend: %s\n", c);

}

fprintf (stdout, "Close fd...");

if (close (fd) < 0) {
perror ("Close device failure");
return -/4;

}

fprintf (stdout, "done!\n");

fprintf (stdout, "Stop!\n");

return 0O;

7.2.4 RS485 connector (CN2)

Plcm04 is equipped with a standard male DB9 connector.

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice
27

X =XON

EMBEDDED

J

RX/CHB-
TX/CHA-

RTS/CHA+
CTS/CHB+
+5V_OUT

I\JLA)-I“-“-‘U'I

00000

mﬂm‘m

7.3 Use PLCMO05 module (Expansion module)

The PlcmO05 is a simple plugin build to simplify the connections, and use various interfaces.

- 5 }/
7 0%

_J

‘“ =)

7.3.1 SPI Plugin connection

The Plcm05 can be plugged in every development kit plugin connector.
If you connect the Plcm05 on the connector “Plugin 1" the system provide the spidev0.1 interface.
If you connect the Plcm05 on the connector “Plugin 2" the system provide the spidev1.1 interface.

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

28

X =XON

EMBEDDED

7.3.2 SPI System configuration and plugin use

Once connected the plugin you can power-up the development kit and wait the booting process. The
system is just configured to use this module, and you can read/write on the SPI port.

7.3.3 SPI Example C code
Here a simple example writed in C:

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <errno.h>

#include <fcntl.h>

#include <linux/spi/spidev.h>
#include <stdio.h>

#include <sys/ioctl.h>

#define MSG_LENGTH 2
#define SPI PORT PLUGIN 1 "/dev/spidev0.1"
#define SPI_PORT PLUGIN 2 "/dev/spidevl.l"

/*
* SELECT USED PORT
*/
#define SPI_PORT SPI_PORT PLUGIN 1

static void writeSPI(unsigned char buf[2])
{

int £d;

unsigned char swap_ buf[2];

char name[20];

struct spi_ioc_ transfer xfer[?];

sprintf(name, SPI_PORT);
//fprintf (stdout, "writeSPI on %s \n ", name);
fd = open(name, O RDWR) ;
if (fd < 0) {
perror ("Open") ;
return;
}
memset (xfer, 0, sizeof xfer);
memset (swap_buf, 0, sizeof swap_ buf);

swap buf[0] = buf[l];
swap buf[1l] = buf[0];
xfer[0].tx buf = (unsigned long)swap buf;

xfer[0].len = 2;
ioctl(fd, SPI_IOC MESSAGE(2), xfer);
close (fd) ;

}

static void readSPI(unsigned char buf[2])
{

int f£d;

unsigned char swap buf[?];

char name[20];

struct spi ioc transfer xfer[”];

sprintf(name, SPI_PORT);
//fprintf (stdout, "readSPI on %s \n ", name);
fd = open(name, O RDWR) ;
if (fd < 0) {
perror ("Open') ;
return;

}

memset (xfer, 0, sizeof xfer);
memset (swap_buf, 0, sizeof swap buf);

swap buf[0] = buf[l];

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

29

X =XON

EMBEDDED

swap buf[l] = buf[0];
xfer[0].tx buf = (unsigned long)swap buf;

xfer[0].len = 1;
xfer[1].rx buf = (unsigned long) buf;
xfer[1].len = 1;

ioctl(fd, SPI_IOC _MESSAGE(?), xfer);
close (fd) ;

}
int main(int argc, char const *argvl[])
{
int i;
unsigned char b[MSG LENGTH] ;
for (i=0; i<OxFEFEE; i++)
{
memset (b, 0, sizeof(b));
b[1] = ((unsigned char) ((i & O0xEE00) >> 8));
b[0] = ((unsigned char) ((i & 0x00FE) >> 0));
writeSPI(b);
usleep (100000) ;
}
exit (0) ;
}

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

30

X

7.3.4 CN4 Connector

EEEEEEEE

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

CN4
+5V <] 115 o2 > +3V3
SPI_CLK 1o ol Il
|||—5—o ot 8 RST_OUT*
sbA—'{o of 8 ——scL
SPI_SIMO—210 o9 SPI_INT*
SPI_CST— 1o of 12— spi_som
(CAN.RX) 1o of 14 (caN_TX)
TX 15 O O 16 I
RX— 1o o 18 “c1s
+3V3 <] 19 16 of20 4,

31

X =XOXN

EMBEDDED

8 Upgrade FPGA firmware (us02-kit only)
Power up the uS02 kit and block the boot process during u-boot countdown by pressing CTRL-C.

T-Boot Z015.02.17 (Aug 21 2018 - 12

SEEFRCH

e bootargs console=tLy30, 115200 ro

Type the following commands:

mw.l ££210010 7fe
run bootcmd

Now wait the booting process and in Linux terminal type:
dd if=path to new fpga image.bin of=/dev/mtdblock0 bs=1M

After few minutes the command ends, for use new FPGA firmware power-off and power-on the
board.

32

X =XON

EMBEDDED

9 JMobile Portable runtime

JMobile is a software suite designed to offer a complete HMI solution with client-server architecture.
It is made of several software components, integrated into a unique application. JMobile applies the
latest available technology developed for HMI in industrial automation to every situation where a user
interface is required. The suite includes commissioning tools, to allow easy maintenance and
configuration of multiple remote units, and both desktop and runtime engineering software for
application development.

The portable version of JMobile is a standard Linux JMobile runtime provided as a chroot-based
container designed to run under Linux 32bit ARM platforms.

The portable JMobile runtime is provided for rapid prototyping and evaluation purposes and
contains a subset (Codesys V3/, Modbus and the internal variables protocol) of the available
protocols. In particular serial protocols are not supported, the serial port on the evaluation kits is
only meant for debugging purpose.

A closer integration with the final target system and access to the complete set of protocols can be
achieved on demand during the product engineering phase.

9.1 JMobile portable runtime installation

By default JMobile in preinstalled on both the standard SD image and the rootfs generated by our
standard Yocto recipes. In this case a JMobile icon can be seen on the desktop that can be used to
manually start it.

The portable can however also be downloaded separately from here:

http://download.exorembedded.net:8080/Public/OpenHMI/

Then to install and run it from ssh follow these steps:

1. Copy it into the kit.

$ scp jmobile-[..]-portable-devkit.tar.gz root@[hostname] :~

2. Connect to the kit:

S ssh root@[hostname]

3. Now, from the remote shell, untar the package in a folder with write permissions (e.g. /opt)

S tar xzpf jmobile-[..]-portable-devkit.tar.gz /opt
$ rm -rf jmobile-[..]-portable-devkit.tar.gz

4. Make sure X11 is not running:

/etc/init.d/xserver—-nodm stop

5. Start JMobile:

/opt/jmobile portable/run.sh

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

33

X =XOXN

EMBEDDED
In both cases it's possible to configure the BSP to automatically start JMobile Runtime at boot:

1) Remove the script xserver-nodm:

update-rc.d -f xserver-nodm remove

2) Add a new script to the init sequence:

echo “/opt/jmobile portable/run.sh &” > /etc/init.d/jmobile
chmod a+x /etc/init.d/jmobile
update-rc.d jmobile defaults 99

o+ o3 W

9.2 JMobile OpenHMI Studio quick start guide

To download a free trial of OpenHMI Suite go to our web page dedicated to development kits on
exorint.com:

https://exorint.com/product-category/embedded/dev-kits/

Select the device you are working with then, from the “Download” section, download the latest version
of OpenHMI Suite. After installation, start OpenHMI Studio and create a new project from “File” ->
“‘New..":

@ OpenHMI Studio - o x
P

aoualajay ssolg Gep N

penHMI

A JMobils softwars

ocaton: [l ovgrooamene oL

L0080

Chose a project name, select a location folder and click on “Next”. Select now the correct target
corresponding to the board:

ID No. UM-0012-REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

34

@ OpenHMi Studio

Device type: EK01_LinuxOE
Project size: 60 Mg (max)

The goal is to create a project simply consisting of an increasing numerical counter. Although at the
end it won't do very much, this example project will introduce you to some of the basic mechanics
JMobile uses to combine protocols, data and visualization.

To begin with, from the “ProjectView" on the left panel, click on “Protocols”. Here click “+" to add a new
protocol and select “Variables” as shown in the figure below:

=8 Project3
& Project propertie:
EHe Pages
.1 1:Pagel

- Dialogs

= Templates
E1F Web
™ Pages
= Templates
™ Dialogs
E+F® Config
£\ Protocols
-2l Tags

B Trends

= Reports

A AMarms

#* Events Buffer
¥ Scheduler

% MultiLanguage
B9 Screen Saver
3, Database Link: v

Configuration | Diclionaries | Enable Offline Alg
MNone available. [m]

Use the left panel to move to “Tags”. Press “+" and add an unsignedShort tag named “Tag1”
representing our counter.

ID No. UM-0012-REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

35

i File

malpoalgn 5.

LB0UBIBaY 88040 BEL N

Edit Run

Format View Window Help

1:Pagel

=XOXN

EMBEDDED

(=58 Project3

£ Pages
L Pagel
- Dialogs

¥ Templates
28 Web

-2 Pages
¥ Templates
L Dialogs
™ Config

B Trends
& Reports
2 Alarms

¥ Scheduler

[Project propertie:

" 53 Indexed Tag

" Events Buffer

%> MultiLanguage
{8 Screen Saver
>

+—-AVv|X W | >] ”Valiables:proﬂ

BGEIE

|Name

| Group |

Driver

Address |

Encodin

|CDmmenl

| Sim

W

>|Tag1

Variables:protl

Tagl unsignedShor

Variables

Maleo abpin &

Ready

Add a numeric field widget to the project’s page by dragging it from the Widget Gallery:

i File Edit Run Format View Window Help

Protocols

1:Pagel” x

Propertie! Widget Gallery

LB3UBIBJaY 88017 BEL K‘ | malposln &

] Qe] (e

xEHEH RS R-

#1 field1

=-B8 Demo_Project

[Project properties
-7 Pages
B 1: Pagel
-7 Dialogs
i Templates
-3 Web
9 Pages
7 Templates
/7 Dialogs
- Config
£\ Protocols
2] Tags
B Trends
=) Reports
A Alarms
i Events Buffer
T Scheduler
o MultiLanguage
[Screen Saver
(4, Database Links
[Data transfers
-4F Interfaces
(i) Security
- Recipes
(-7 Dictionaries
(-9 Keypads

g &= @ @ | S Font [Tahoma -

A~B I U

1

TextNumeric ~

[abel

Decim
Leadir
Keypz

99999

7FFF

Messagd

aljeg 1abpIv 38|

Factory Automation

| i fialad

I dRR w13R

User Widaets

Double click on the numeric filed and select “Tag1” to bind the widget to the tag's value:

ID No. UM-0012 - REV. 1.10

©2018 EXOR Embedded S.r.l. - Subject to change without notice

36

X

=XON

EMBEDDED
I File Edit Run Format View Window Help
., Projectiew 3 x mrm— oS 1 x
—E AV
gt==% QRAABt e v XED OB e E
¢ | 58 Project3 ~ — : =l Field
5 @ Project propertie]. | | = & f = @ 3.\2 Font | Tahoma v A B > o Vae 99999
3 =17 Pages ~ Datalink | Tagl:_Tag
L. 1:Pagel 99999 Number For #
b -3 i
fe)
B =Rl :
g ol [Tag || A scale | % xForms |
o
% Source:
§ (® Tag () Alias () System () Widget () Recipe

[P- Search

| 7 Filter by:|Data

- | Protocol :| Show all

v |

[show all tags

8

Data

Type Tag name

4 Variables:protl Container

Property

4 Driver
Pratocol

4 Tag
Active
Data Type

Default value

Value R

Variables:protl

false
unsignedShort

(@) Read Only () Read/write (_) Write Only

Itermns used: 1/10000

Taglndex: 0O

@

Ready

Now move to “Scheduler’. Add a HighResolution scheduler with a “StepTag” action to increment the
counter. Note in the figure below that our tag has been selected for “TagName” under “Action

Properties”:

! File Edit Run Format View Window Help

,‘;, ProjectView ax 7 1:Pagel* Pratocals Tags; Scheduler* x— ' m
gt -—EAv +—Awv =
= : =
% J;_a Templates “~ [1ID] Name | Type | Schedule | Action [2rioriy e
g =6 Web '+[1 Schedule HighResolution Every 100 msec L [Mediu =
=
. Action List + — AWV
g #" StepTagiProjec... Action |
o - :
2 L3 Index & & Action Properties
g B8 Trends E£l-MultiLanguage A = StepTag
= 2 Reports & _I_'"SE'La”QUEQE Project:_TagMgr; Tagl;Tag
7= Stey
2 Alarms DataTransfer b P 1
" Events B - ToggleBit 0 not step| false
¥ Schedul - SelBit StepLimit |0
% MultiLa Deset
3 Screen S
3 Databas ActivateGroup
--E Data tra - Deactivate Group
-1 Security g:j:blegi’dep . "
43 AuditTrail e v v
- Recipes
<

Click on the "Download to Target” icon in the toolbar or simply press Ctrl+D. Make sure the
development kit is powered on, that you can reach it over the network and that JMobile Runtime is
running. Select the target from the drop-down list and click “Download” to deploy the project:

ID No. UM-0012 - REV. 1.10

©2018 EXOR Embedded S.r.l. - Subject to change without notice

37

X

malpalgo 57

aaualajay ss01) Bl M

=XON

=1 Config
Protocols

| Tags

53 Indexed Tac
- Trends

= Reports

-..& Alarms

.. Events Buffer

B Crhadilar

|1n

.10 . 10 .20?|E
Advanced

EMBEDDED
! File Edit Run Format View Window Help
= (ol 3 O i g B e Langt -k
e BX pagel | otocal | Tags. Scheauler x| -
+ - g a4 + =AWV
== Project3 ~ D] Name | Type | Schedule | Action riori
& Project properties | +|1 Schedule HighResolution Every 100 msec Mediu
=1F Pages
TR Pagel
- Dialogs
- Templates
=+ Web
% Pages
™ Templates
-4 Dialogs Ready to download

Download ||

Close

If the JMobile Runtime on the device is found to be an older version the Studio will automatically
update it before downloading the project.

The portable version of JMobile uses non standard ports for FTP and HTTP protocols in order to avoid
conflicts with other services on the host device:

g e9leBpiv &

FTP port:
HTTP port: 8585

2525

From the OpenHMI Studio nothing needs to be configured as long the device is selected form the
target list the correct ports will be used. However when accessing a JM4Web html project page from
a browser, the http port needs to be specified in the url bar:

http://<target-IP>:8585

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

38

X =XON

EMBEDDED

10 CODESYS V3

The CODESYS V3 programming software can be downloaded for free from the CODESYS web site at
www.codesys.com/download.html.

You will need to register before you can download the software. The version used in this chapter is
CODESYS v3.5 SP10 Patch 5.

10.1 Enabling CODESYS runtime

The Codesys runtime is included inside the JMobile portable but to make it start it's required to
enable it first. To do this all it's required to do is to create a specific file from a ssh shell:

touch /opt/jmobile portable/mnt/data/hmi/qgthmi/codesys auto
sync

This is assuming the portable is installed in /opt/jmobile_portable. After rebooting the device
Codesys will automatically start with JMobile Runtime.

10.2 Installing CODESYS Devices

A device descriptor is required to allow the standard CODESYS V3 to work with the evaluation kits.
This is provided inside a Codesys .package file that can be found inside OpenHMI Studio installation
directory:

C:\Program Files (x86) \Exor\OpenHMI Suite 2.8\CODESYS\V3\CODESYS JMobile [..].package

This file can be imported from the CODESYS programming software. Select “Tools” -> “Package
Manager...” from the toolbar, the below dialog should appear:

@ Package Manager x

Currently installed packages:
Refresh Sortby: |Name ~ Install...

MName Version Installation date Update info License

& copesys softMotion 42,11 5/4/2018 Free version 4.3.2.0 available! Mo licens

Updates

Search updates

CODESYS Store

CODESYS Store

£ >

[] Display versions Search updates in background Close

Click on the “Install...” button and browse for the package file. The choice can be confirmed with
“Open”. Finally select “Typical Setup” and continue trough the guided installation until completed.

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

39

http://www.codesys.com/download.html

X =XON

EMBEDDED

10.3 Creation of a new PLC project

To create a new CODESYS V3 project select “File” > “New Project” or click on the corresponding icon
from the upper tool bar. The “New Project” dialog will be displayed, here, among the available
templates, select the “Standard project” template. Choose a project name and a location then confirm
with “OK”.

|=] New Project I@

Categories: Templates:

{1 Libraries s =
[Prajects [L = 'E

Empty project €TOPS00 Standard Standard
project project project w...

A project containing one device, one application, and an empty implementation for PLC_PRG

Name: Demo_Project

Location: C:\Users\user\Desktop - E]

There are two different device descriptors for the development kits. The one to choose depends on
whether the hardware does have an FRAM or not:

US02-kit, US03-kit, NSOl-kit DevKit (FRAM)
USOl-kit, NSOl-kit-OpenHMI DevKit (no FRAM)

To complete the project creation, select the one of the two devices above and the preferred
programming language of choice.

Standard Project *

: You are about to create a new standard project. This wizard will create the following
= objects within this project:
LE
- One programmable device as specified below
- A program PLC_PRG in the language specified below
- A cyclic task which calls PLC_PRG
- A reference to the newest version of the Standard library currently installed.

Device: Devkit (FRAM) (Exor International 5.p.A.) ~

PLC_PRG in: | Structured Text (ST) V

Gancd

10.4 Communication setup in the CODESYS software

The selection of the target where to download the project must be done from the device
communication settings tab before proceeding with the download operation.

Double click on the “Device (DevKit ..)" node available in the project tree to display the Device
properties in the work area, select the “Communication Settings” tab then click on the “Scan Network..."
button.

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

40

X =XON

EMBEDDED

The “Select Device” dialog will be displayed, this dialog lists all the compatible devices available in the
network, select here your device then press on “OK”.

In case more panels using CODESYS V3 PLC runtime are present into the network each panel can be
recognized by the string between square brackets shown just after the device name. In the figure
below, for example, the string is “0000.392B" for the highlight device. The last part of the string “392B"
corresponds to the last 2 bytes of the panel IP Address in Hex format so, in this case, the
corresponding operator panel is the one with IP address xxx.xxx.57.43 as 39Hex corresponds to 57
Dec and 2B Hex corresponds to 43 Dec.

Select Device *

Select the network path to the controller:
= % Gateway-1 Device Name: ~ Scan network
. Exor Devkit

[l [Exor Devkit [o000.3928] |

Wink

Device Address:
0000, 3928

Block driver:
LIDP

Number of
channels:
4

Target ID:
10A3 0005

Target Name:
EXOR-ARM-Linux

Target Type:
4096

Target Vendor:
EXOR International *

Cancel

The selected device is then listed in the Communication Settings as shown below. the device
properties are listed on screen. A green dot over the device graphical representation informs that the
device is correctly recognized and available on the network.

® .

Gateway .
| v| |[E|DE|D.392I3] (active) v|
IP-Address: Device Mame:
lacalhost Bxor DevKit
Port Device Address:

1217 0000.392B
Target ID:
10A3 0005
Target Type:
4096
TargetWendor:

EXOR International Sp.A.

TargetVersion:
3.5.10.50

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

141

X =XON

EMBEDDED

Communication with the available devices is established through a Gateway, a default Gateway is
available, and it is generally not needed to change the standard Gateway settings. For more
information about the Gateway set-up please refer to CODESYS V3 documentation.

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

42

X =XON

EMBEDDED

11 Accessing PLC from JMobile

JMobile and CODESYS projects discussed in this section are included in the “JMobile_CDS_demo”
folder from the demo projects package “Demo_Projects.zip”, downloadable from exorembedded.net
(Products > Development Kits).

The JMobile Portable contains also a demo version of CODESYS v3 runtime which is started along
with JMobile runtime. Here is presented an example in wich JMobile will be able to access variable
values from the PLC.

11.1 Codesys project creation

First of all we need to create a simple Codesys program. Assuming a configured project has already
been created on CODESYS v3 and that the Development kit is properly connected we can write
these few lines of code inside the PLC_PRG file:

® Demo_Project.project - CODESYS
File Edit Wiew Project Build Online Debug Tools Window Help

B &lv o & Bl X dii & -0 6

e}

Devices ~ 3 X PLC_PRG X
=] Demo Praject - 1 FROGRAM FLC_ERG
= -COm Device (Devkit (FRAM)) B : VAR
= Eﬂ PLC Logic 3 iCounter: UINT:
=1L} Application : EID_VAR
m Library Manager
IPLC_PRG (PRE) |
= @ Task Configuration
= -8 MairTask
] PLC_PRG
2 iCounter := iCounter +1;

Now right click on “Application” and select “Add Object > System configuration”:

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

43

X

®' Deme_Project.project - CODESYS

=XON

EMBEDDED

File Edit Wew Project Build Online Debug Tools Window Help
BEEI& - EE N G R = R | & | B |
Devices > 0 X PLC_PRG X
=8 Demo_Project - 1 PROGRAM PLC ERG
= =m Device (Deviit (FRAM)) = VR
— Eg PLC Logic 2 iCounter: UINT:
- €3 [Applic=rion 4 END VAR
fip Lo b Cut
PL Copy
= @ Ta Paste
- & P Delete
Browse L4
Refactoring »
Properties... -
2 iCennter = jCounter +1;
H:I Add Object 4 | 4 Alarm configuration...
D Add Folder... € application...
Dﬁ Edit Object B® Data Sources Manager...
Edit Object With... él; DUT...
q Login External File...
Delete application from device @ Global Varizble List...
Image Poal...
=0 Interface...
“ Metwork Variable List (Receiver)...
ﬂ Metwork Variable List (Sender]. ..
T Persistent Variables. ..
& PoL...
] POU for implicit checks. ..
ﬂ Recipe Manager...
@ Redundancy Configuration...
|. ® Symbol Configuration...
Text List. .
aﬁ Trace...
% Trend recording manager. ..
'_':j Unit corversion. ..
@ Visualization... 0 warning(s), 0 messagels)
Visualization Manager...

T F

Double click on the newly created “Symbol configuration” object and from the opening tab click
“Build”. Make sure to check at least the PLC_PRG symbols which contains our iCounter variable:

ID No. UM-0012 - REV. 1.10

©2018 EXOR Embedded S.r.l. - Subject to change without notice

44

X =XON

EMBEDDED

® Demo_Project.project” - CODESYS

File Edit Wew Project Buld Online Debug Tools Window Help

BEEI& v #h o O | 4 | Of =
Devices - 0 X PLC_PRG B8 Symbol Configuration X
=43 Demo_Project - View - | #¥ Build |Ez Settings - Tools +
= Gm Device (Devkit (FRAM))
. 1 There are 2 configured variables which are not referenced by the IEC code.
= @ﬂ PLC Logic
= ":_.i' Application Changed symbol configuration will be transferred with the next download ar or
m Library Manager Symbols Access Rights Maxirnal Attribute
PLC_PRG (PRG) F Constants
o .
2 Symbal Configuration 3 IoConfig_Globals
= (&8 Task Configuration ¥ PLC_PRG
= g@ MainTask
& pLC_PRG

In the main toolbar click on “Build > Generate code” to create, among other files, an xml file that we
will later use to import PLC variables on JMobile.

Now from the main toolbar choose “Online” -> “Login” to deploy the program on the device. If you get
a warning about an existing program on the PLC click OK to overwrite it with the new one.

Lastly, to run the program on the PLC, right click on Application and choose “Start”:

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice
45

X =XON

EMBEDDED

‘® Demo_Project.project” - CODESYS

File Edit View Project Build Online Debug Tools Window Help

BEE & v o & B X (#MiEE im0

=3 Demo_Project
.—'.--,_?:.- Device [connected] (Devkit (FRAM))
=181 pLC Logic
- I} | Applicatior "~~~
*.I] Library M b Cut
5] pLc_PRe Copy
Paste
» Delete
Browse L4
Refactoring »
= Properties...
1 Add Object y
I AddFolder...
[EditObject
Edit Ohject With...
@ Logout
|) start
Online Change
Delete application from device

To keep PLC project on CPU also after a reboot, once the device is online, click on
“Online > Create boot project”.

11.2 CDS3 protocol configuration on JMobile

On the OpenHMI Studio create a project for the target Development Kit. Select “Protocols” from the
Project View on the left, click on the “+" button and select “CODESYS V3 ETH".

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice
46

=XON

EMBEDDED

., ProjectView a X 7 1.'Pa.ge1/ Protocols =
'
- A=
glt—=AvV + —Avg
TOD' =-B8 Demo_Project PLC
= i..[Gg Project properties » I~
@
E 57 Pages A-BDF1 B
CHS 1 Pagel A-B DH-485 b
B 1:Pag AB ENET
-.l7® Dialogs BACnet
== 7 Templates Baldor MextMove
Beckhoff ADS
= =-4
E - Web CANapen HMI
ol F;ﬁ Pages CODESYS V2 ETH
=0 9 Templates CODESYS V2 SER |
0 Dial CODESYS V3 ETH T
| o = Dialogs CT Modbus CMF ETH
= =19 Config EIA Modbus TCP
@ Ethemet/IP CIP
2l - €} B Fatek FACON ETH
@ - =] Tags Fatek FACOM SER
[Trends GE Intelligent Platforms SNP
L GE Intelligent Platforms SRTF | &
- Reports GE SRTP
..... é Alarms Hitachi ETH
..... Events Buff Hitachi SER
g VENLs BUTTEr iPLC CODESYS
i Scheduler Jetter Ext ETH
----- 9 MultiLanguage Keyence KV
KNX TR/IP
-9 Screen Saver Koyo DL
----- L_l; Database Links Koyo DL ETH
[Data transfers Lenze CANopen
Rl Mitsubishi FX ETH
(- Security Mitsubishi FX SER
-2 AuditTrail Mitsubishi G/L ETH &

Configure the protocol as shown in the figure below, then click “OK".

CODESYS V3 ETH

[C]PLC Network
Alias
IP address
Timeout (ms}
[] Full node address
Variable list count

PLC Models

CODESYS 3

| Cancel

|12?.u.u.1

Note that with the above configuration JMobile Runtime will look for Codesys connection on the
localhost. This will work only when the project is running on the Development kit. To connect remotely
you can enter the Development kit network interface IP instead of 127.0.0.1.

Now, to import tags from our Codesys project, select “Tags” from the Project View. Here you have to:

1. Select “CODESYS V3 ETH:prot1” as protocaol.

ID No. UM-0012 - REV. 1.10

©2018 EXOR Embedded S.r.l. - Subject to change without notice

47

Fle Edt Run Format View Window Help

LSS0 F0u7 DEy |

=XOXN

EMBEDDED

et S
. s + — A V| X B W |[>][*|%0]|cODESYSV3ETHpPatl]
24| S8 Demo Project CODESYS V3 ETHprot 1
% JE Project properties
E EE Pages

| .M 1:Pagel
| ™ Dialogs
x - Templates
3 e
o | Pages
3 i Templates
% ; ./ Dialogs
g © Config
g €\ Protocols

B Trends

| = Reports

Click on the “Import Tags” button i . Choose “CodeSys3 v1.0", “Linear” type as tag importer,
click “OK” and then browse and select the xml file you will find in the Codesys project folder
created before.

The name of this file should be something like “<project_name>.Device. Application.xml".

From the lower section of the “Tags” tab select the variable “Application/PLC_PRG/iCounter”

aﬂ.

and click on the Import Tag(s)” button

v &8

= 88 Demo_Project [Gewes | Detvar | Addess
[ig Project properties CODESYS V3 ETHpeet1 1270.0.1 M Appheation/PLE_PRGAC
= Pages
B 1:Pagel
S Dialogs
¥ Templates
= Web
5 Pages
% Templates
9 Dialogs B] CJrearsve B+ seach T Fiter by Data -
= ¥ Config "
&) Protocols Data Trve Fropesty
T, » CODESYS V3 ETHiproal Tag name
" Tenss Hadth CO0ES1S 3 - Deta tpe
{Constants {CompderVersonfisMajor unsigredShort Amay
= Reports Appbeaton Carstants fComplarvier son AiMinoe unsignedshort
& Alarms e o Fors tan'ts A omplier er sson fuP abch unmgredthont TRy
o Events Buffer ApplcationfConstants Compler ViersionServicePack unsignedthort ™
= o Appkcabon Comstants funbme iersion fuMajor unsignedshort LR
Schedu A D Bon FCons Tanks Fun Bme Ver sion AiMnor unsignexishornt DHCROnany mame
2 MultiLsnguage Apphes bon Foormtants Run e Version P atch unsignedshort
B Screen Saver Apphcation Constants funmeVersion uServicePack unsignedthort
[Database Links ApploationToConfig_GlobalsinloConfigTaskMapCount int
I3 Dota transfers Apphcatian Clobals faleCan
£ Interfaces
- Secwnity

Lastly, on a project page, add a numeric label widget, right click on it and choose “Attach to..". Here
select the Codesys tag and click “OK".

ID No. UM-0012-REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

48

X =XON

EMBEDDED

' ™y
field1.value

Tag | Je Scale | @ XForms |

Source:

@ Tag () Alias () System () Widget () Recipe

|,°- Search | TFiIter by: Protocol: | Show all hd [T show all tags =
Data - Type Tag name Property Value Il
CODESYS V3 ETH:protl . 4 Driver
“ Model: CODESYS 3 Container e T RED L
o = = r. = = = = £
Application/PLC_PRG/fiCounter unsignedShort Application/PLC_PRG iCounter Protocol CODESYS V3 ETHiprot1
4 Tag =
Active false
Data Type unsignedShort
Default value
Description
Encoding
Groups
Max value i
@ Read Only (©) Read/Write () Write Only Items used: 1/10000 Taglndex: g = ‘T}

[oK][Cancel]

L8

J

Once you have downloaded the project to the Development kit, if the PLC program is running, you
should see the Codesys “iCounter” variable being incremented.

HongKe FhE L
. . . . H*SI- hkaco.com SR
TEFMEE? B@idsales@hkaco.comBARFA] | EEiFE: 400-999-3848
PEL: TN | A6 | i RN | Fa%e | BN | BED | DUBE | B | &8 | =R

ID No. UM-0012 - REV. 1.10
©2018 EXOR Embedded S.r.l. - Subject to change without notice

49

