Kairos development kit
Software user manual

Kairos development kit

History
Rev Date Description By
1.0 18/Jul/2019 Initial version AG
1.1 27/Aug/2019 Updated screenshots AG
Added details about command line utilities
Added sections about OpenHMI
Reference
Re?(g?esrice Filename Description
(1]

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders will be liable
for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved. Technical data subject to

change. Copyright © 2078 EXOR International S.p.A. - All Rights Reserved.

TABLE OF CONTENTS

T OV BIVIBW e e, 5

2 SOFEWAIE OVEIVIEW ... 6
2.1 K@ITOS AFIVET ..o 6
2117 DSA-compliant SWItCH ..o 6

212 PHC oo 7

2.1.3 SWITCIN oo 7

2.2 Kairos registers acCess HDrary ..o 7
227 Read KairoS reQISter 7

2.2.2 Write KairoS reQISTEYovoieceieeee e 8

2.3 Command lINE ULIIIIESooovoiiooe e 8
2.3 KDl o 8

2.3.2 KIS o 9

2.3.3 KIAD oo 11

2.3 4 KVIGN oo 12

24 PIDAK oo, 13

2.5 CONrOl SCIPT ..o, 13

2.6 SOMtWAIe fOIABIS ... 14
2.0.T BiNTOIET ..., 14

2.6.2 Configfolder. . ..o 14

2.6.3 SCriptS fOIAEr ..o 14

3 DeMO @PPLICATION ... 16
3.T Hardware CONNECTIONc.oiiieeeeeeeeeeeeeeeee e 16

3.2 LOQICal CONNECTION ... 17

3.3 DEMO AESCIIPTION ..o 17

3.4 Walkthrough QUIAE..........cooiieeeee e 17
3.4.1 Run demo application with no network traffic..............ccocoooooi 17

3.4.2 Activate network traffiC ..., 20

4 Boundary ClOCK SUPPOIcoiiioeeceeeeeeeeeeeeee e 21
Setting up the build enNVIrONMENT ... 22

5.7 Runningthe VirtualBoX VMo.cooiiiiiiiieeeeeeeeeeeeeeeeeee 22
5.1.1 Setupaguest-host shared folder............ccccooiiiiiiiceeeee 24

571.2 Configuring the SDKc.cooiiiioeeeeeeeeeeeeeeeeeeeeeee 24

9. 1.3 USING QECrEATON ..o 24

5.1.4 Compiling the BSP With YOCTO.......ccovovoioiicioeceeeee 25

6 Compiling YoCcto BSP from SCratCh.cccovoviioiiiioeeeeeeeeeeeeeeee 26
6.7 Setupthe build enviroNmMeENt............ocoooiiiieeee e, 26

6.2 Optional CUStOMIZATIONSocovieceee e, 26

6.3 CompiliNg YOCTO BSP......oooioiiieeeeeee e 27

6.4 Creating the SDK (0PtioNal)........cooovovoooeeeeeeeeeeeeeee e 28

7 Deploy BSP ON SD Card........cooiiieoeoeeeoeeeeeeeeeeeeeeeeeeeee e 29
7.1 USING an SD Card IMAGE.vveeieeeeeeeeeeeeeeee e 29

7.2 USING BSP PACKAGES ..o 30

8 DeplOy BSP ON EMMU ... 31
9 Setup the workspace for building applications ... 33
9.1 Cross development environMeNnt SETUDc.ooiioieiiieeeceeeeeeeeeeee 33

0.2 Connectingto the deVICE ..., 33

9.3 QECIEATON SETUD ... v 33

9.4 Application deployment ..., 37

10 Building the development kit appliCationsocoiiiiiieeeeeeeeeeeee 39

TO. T FOIAEIS SETUCTUI ..o 39

TO2BUIAING PIPAK ..o 39

10.3Building kspi, ktsn and Kfdb ..o 40
10.4BUIldiNg WED INTEITACE...........oooeeeeeeeeeeeeeeeee e 40
10.4.71 Buildingthe backend.............c.coooiioieeeeeeeeeeeeeee 40

10.4.2 Building the frontend............oooooioeeeeeeeeeeeeeeeeeeeeeeeee 40

1T OpenHMI Portable runtime ... 42
11.10penHMI portable runtime installation...............cooooooeeeeee 42
11.2Run OpenHMI portable runtime at boot ... 42

11.30penHMI Studio quick start quide ... 43

T Overview

This manual provides a getting started guide to the Kairos development kit. This document will guide
you through the following steps

Understand the software architecture of the Kairos-based solution

Go through the implementation details of the software provided

Create the environment to build test applications

Build the all the system software (BSP) from scratch

Deploy the system software to an SD card

gk =

2 Software overview

Kairos kit has been developed to give you an easy-to-use platform for experimenting with the Kairos
chip. Kairos chip implements a TSN (Time Sensitive Network) stack to simplify the implementation of
devices that can leverage TSN technologies to provide reliable and deterministic packet delivery

The Kairos development kit software architecture is shown in picture below

PTP4K ™
Command line
utilities
Kairos's register access library

User space

- - | - - -_— -_— -_— -_— -_— -_— -— -— -— — — — — — — — — — — -_— -_—
l v Kernel

Linux networking FPHC

subsystem
DsSA Switch

Kairos driver

Linux OS

In light orange are the components specific to the Kairos solution, in light blue are the components that
are part of a standard Linux distribution

2.1 Kairos driver

Kairos driver implements all the functionalities required to integrate Kairos features in the standard
Linux kernel. It exposes interfaces that make use of Kairos chip features as easy and seamless as
possible from a typical user application. Three major components are built inside the Kairos driver

2.1.1 DSA-compliant switch

The Kairos chip has been integrated in the standard Linux kernel by leveraging the DSA (Distributed
Switch Architecture) framework. Thanks to this approach, the two Kairos native Ethernet ports installed
on the development kit are visible as standard network card (hamed lan0 and lanT) and can be
accessed and configured by means of standard tools like ifconfig, ethtool, etc.

More details about DSA architecture can be found at this link

https://www.kernel.org/doc/Documentation/networking/dsa/dsa.txt

https://www.kernel.org/doc/Documentation/networking/dsa/dsa.txt

212 PHC

Kairos PHC (PTP Hardware Clock) device complies with the standard method for developing PTP user
space applications (namely ptp4l).
A new class driver exports a kernel interface for specific clock drivers and a user space interface. The
infrastructure supports a complete set of PTP hardware clock functionality.
Basic PHC operations include

- Settime

- Gettime

- Shift the clock by a given offset atomically

- Adjust clock frequency

Ancillary clock features include

- Time stamp external events

- Period output signals configurable from user space

- Synchronization of the Linux system time via the PPS subsystem
More details about the PTP Hardware Clock drivers can be found at this link

https://www.kernel.org/doc/Documentation/ptp/ptp.txt

21.3 Switch

This submodule implements the interface to the Kairos chip specific features, like the Qbv scheduler,
the integrated bridge capabilities on so on

FDB entries can be added to the Kairos switch using standard bridge command. For example, you can
add a new FDB entry to lan0 port by typing the following command

bridge fdb add 01:1b:19:00:00:00 dev lanO

2.2 Kairos registers access library

This is a library provided as redistributable source code that implements all the routines required by a
user application to access the Kairos register through a standard SPI interface.
This library exposes these main functions

2.2.1 Read Kairos register

This function reads a 16-bits register from the Kairos module

int kairos read(const char* spidev,
KATROS MODULES module
uint8 t addr,
uintl6é t* rvalue);

where
- spidev is the SPI device the Kairos chip is connected to (e.g. /dev/spidev0.0)
- module is the desired Kairos module. Valid values are
o KAIROS_MODULE_GENERAL: general module
o KAIROS_MODULE_TSN
o KAIROS_MODULE_PTP
- addr is the address of the register to read

https://www.kernel.org/doc/Documentation/ptp/ptp.txt

- rvalue: pointer to the variable where the value being read will be stored

2.2.2 Write Kairos register

This function writes a 16-bits value into a Kairos module’s register

int kairos write (const char* spidev,
KATROS MODULES module
uint8 t addr,
uintl6e t wvalue);

where
- spidev is the SPI device the Kairos chip is connected to (e.g. /dev/spidev0.0)
- module is the desired Kairos module. Valid values are
o KAIROS_MODULE_GENERAL: general module
o KAIROS_MODULE_TSN
o KAIROS_MODULE_PTP
- addr is the address of the register to read
- wvalue: is the values to write

2.3 Command line utilities

Built upon the Kairos register access library, command line utilities provides a ready-to-use solution for
setting up the Kairos chip

231 kspi

This utility provides read and write access to any register in the Kairos chip (please refer to Register
document for details about Kairos chip registers)
To use of this utility is straightforward. To read a register, the syntax of the command line is

kspi rd <module> <addr> <num regs>

where
- <module> is the Kairos chip module number, namely
1. general module
2: TSN module
3: PTP module
- <addr> is the register address (hexadecimal format)
- <num> regs is the number off register to read

The syntax to write a register is

kspi wr <module> <addr> <num regs> <values>

where

- <module> is the Kairos chip module number, namely
1: general module
2: TSN module
3: PTP module

- <addr> is the register address (hexadecimal format)

- <num> regs is the number off register to read

- <value> is the value to write (decimal format)

232

ktsn

ktsn IS another tool that provides high-level functionalities to configure the Qbv scheduler of the Kairos
chi. Supported functions include

load a scheduler configuration file

configure scheduler cycle time and base time (either relative or absolute)
set PVID (Port VLAN Identifier)

show TSN statistics

show PTP statistics

Here are some details about supported command line syntaxes

2321

Configure scheduler

The command line syntax to set scheduler cycle time and base time is

ktsn config <cycletime> <basetime> <gatefile>

where

<cycletime> is the period (in nanoseconds) in which the sequence of gate operations is
performed. As the name suggests, the cycle is repeated periodically. Once a cycle begins, the
gate sequence is always restarted from the beginning. A cycle should at least be able to
accommodate one (or more) packet transmission times to be useful. Note that the current
version of the IP core does support CycleTimes with nanosecond granularity, so fractional
values are not possible.
<basetime> IS required to achieve synchronization among all the devices on the network. Qbv
gate operations are taking place inside of cycles. For useful inter-device operation, these cycles
should always start at defined points in time, even after a device (temporarily) reboots. It might
be required by an application that all devices in a network start their cycle at the same point in
time. To achieve such synchronization, a parameter called AdminBaseTime is configured into all
devices participating in the TSN network (the same value would be used if the cycles should
start at the same time on all devices). When a device begins or resumes TSN operation, it must
determine the time of the first cycle it starts. This is based on the precise network time base
(e.g. PTP), so the device needs to be synchronized. If the configured AdminBaseTime is still in
the future, the device will simply wait until that time comes and start the first cycle at that time.
On the other hand, if AdminBaseTime lies in the past, the device needs to calculate the next
feasible cycle start using the AdminBaseTime value.
The principle of this calculation is to quantize time based on the given cycle times, with
AdminBaseTime as the starting point. In other words, the intended cycle start will be at an
integer multiple of cycle times added to AdminBaseTime. To calculate the actual value, the TSN
driver could simply keep adding cycle time values to the admin base time until the accumulated
value is larger than the present time.
The supported formats for these parameters are
1. Absolute time: an absolute time can be expressed using the ISO8601 format
. <YYYY>-<MM>-<DD>T<hh>:<mm>:<ss>.<mmm>
For example:
.2018-01-03T01:02:03.456
Absolute time is assumed to be expressed in UTC time
2. Relative time: a relative time can be expressed using the following format
. [+]-]<seconds>.<milliseconds>
For example
.+10.123
will apply the Qbv schedule starting from 10 seconds and 123 milliseconds from current
time

- <gatefile> is a file with a sequence of scheduler gates status. There are 8 scheduler gates
(one for each available VLAN priority). The gatefile is made up of one or more lines with the
following format

. <command> <duration> <gates status>
where
* <command> iS the command to execute. Currently, only the sgs command (Set Gates
Status) is supported
= <duration> is the period of time (expressed in nanoseconds) the gates must stay in
this state
" <gate status> IS the status the gates must be put on. This is value in hexadecimal
format ranging from 0x00 to OxFF. This value is treated as a bitmask. Bit O
corresponds to the status of gate O (i.e. the gate through which untagged packets
are sent). If the bit is 0, the gate is disabled (no packets are allowed to be sent
through that gate). If bit is 1, the gate is enabled, and packets are allowed to be sent
out
An example of the content of a valid <gatefile> is as follow
.sgs 500000 OxOF
.sgs 500000 OxFO
In this configuration, gates 0 to 3 stays open for 500 microseconds of the cycle,
then gates 4 to 7 opens for 500 microseconds

2.3.22 Show TSN statistics

The command line syntax to show TSN statistics is

ktsn show tsn

Example of the output of this command is shown below

Build date: 19/1/24 16:18:45

Release: 4.173.0 - 206

Current counter values

Counter Interlink Front A FrontB

Rx

filtered
octets
tagged =

errors

overload

unicast

multicast -

broadcast =

< 64 bytes =

64 bytes =

< 128 bytes =

< 256 bytes -

< 512 bytes = 5334711
< 1024 bytes -

<=1518 bytes =

> 1518 bytes

0 dropped

1 dropped

2 dropped

3 dropped

4 dropped 5334711
5 dropped

6 dropped

7 dropped

0 frames

1 frames

2 frames

3 frames

4 frames

5 frames

6 frames

1605656 6940368

O O O OO0 OOOOUIOOOOOOOWWMOOOOOOOoOoOooo o
OO O OO OODOODOWOOODODOODIODODOOOOOOOOOoo oo

OO O OO OOOOOwoooo |

Rx 7 frames 0 67437573
Tx octets = 44958382
Tx tagged = 0
Tx errors -
Tx unicast -
Tx multicast =
Tx broadcast -
Tx < 64 bytes =
Tx 64 bytes -
Tx < 128 bytes =
Tx < 256 bytes -
Tx < 512 bytes =
Tx < 1024 bytes =
Tx <=1518 bytes =
Tx > 1518 bytes -
Tx 0 overrun =
Tx 1 overrun -
Tx 2 overrun =
Tx 3 overrun =
Tx 4 overrun =
Tx 5 overrun -
Tx 6 overrun
Tx 7 frames

Tx 0 frames

Tx 1 frames

Tx 2 frames

Tx 3 frames

Tx 4 frames

Tx 5 frames

Tx 6 frames

Tx 7 frames

629155

eNeoNeololeoNoNoloNololNoNoNololoNoNoNololNoNoNolololNolNoNolNolNolNolNo]

cNeoNeoNoN VoloNoNoNoloNoNolNoNoloNeoNoNoNoNoNoNolNoNoNoNeNo)

cNoNoloNeoNoNolNolNoly

2323 Show PTP statistics

The command line syntax to show PTP statistics is

ktsn show ptp

NOTE: this command shows the content of some internally-used PTP registers and is useful for debug
purposes. From a user point-of-view, it's more useful to get PTP statistics from standard Linux tool (e.g.
pcm)

Example of the output of this command is shown below

Build date: 19/1/24 16:18:45
Release: 0.0.0 - 206

Clock 0.000000000
Free running 1.045946744
Syntonized 1.091274195
Synchronized 21.165095085
Drift accum. 0.007696582

Port A Rx 21.147697227
Port A Tx 0.000000000
Port B Rx 0.000000000
Port B Tx 21.159090705
233 kfdb

kfdb is @ command line utility to create, delete and query Kairos FDB entries

2331 AddFDB entry
The command line syntax to create a new FDB entry is
kfdb add <MAC address> <port mask> <priority>

where

- <MAC address> iSthe MAC address to add to the Kairos FDB database. The MAC address is

made of six hexadecimal values separated by “’ (column). A valid MAC address string is
01:1b:19:00:00:00

- <port mask>iS a hexadecimal value where a bit corresponds to a port of the Kairos chip. If a bit
is set to 1, a packet that matches the FDB entry will be sent to the corresponding port
o Bit 0: cascading port
o Bit2: front port 1
o Bit 3: front port 2
- <priority> is the traffic class (0..7) to assign to the packet that matches the FDB entry

NOTE: Kairos FDB entries can be managed also using the standard Linux tool bridge. However, due to

the limitations in the options supported by bridge, the FDB entries are created with <port mask> set to
“Cascading”

2332 Delete an FDB entry

The command line syntax to delete an FDB entry is

kfdb del <MAC address>
where

- <MAC address> iS the MAC address to add to the Kairos FDB database. The MAC address is

made of six hexadecimal values separated by "’ (column). A valid MAC address string is
01:1b:19:00:00:00

2.3.3.3 Query FDB entries

To show the current FDB entries, please type the following command

kfdb show

234 kvlan

kvlan is @ command line utility to configure and delete VLAN membership

2341 Configure VLAN membership

The command line syntax to add a port to a VLAN is

kfdb add <vid> <port> [untagged] [pvid]

where

- <vid>isthe VLAN ID
- <port> is the port to add as a member to the given VLAN. Valid values are
o 0:cascading port
o 2:frontport 1
o 3:front port 2
- untagged if this keyword is added to the command line, the port will send untagged packets
- pvid if this keyword is added to the command line, the PVID will be set

2342 Delete VLAN membership

The command line syntax to remove a port from a VLAN is

kvlan del <vid> <port>

where
- <vid>isthe VLAN ID
- <port> is the port to add as a member to the given VLAN. Valid values are
o 0:cascading port
o 2:front port 1
o 3:front port 2
24 ptpdk

The standard implementation of ptp4l (PTP For Linux) has been modified to use Kairos hardware
timestamping registers. This new version has a new timestamping option (-K) to activate the Kairos
timestamping

A complete documentation of the standard ptp4l command line options can be found at this link

https://www.mankier.com/8/ptp4l

These options are all supported by ptp4k as well. The only think to note is that the only timestamping
option is “-K”". This means that other timestamping options (-H, -S and -L - respectively hardware,
software and legacy) can not be used with ptp4k

2.5 Control script

A helper script has been included in the software provided with the Kairos development kit. The script
has options to
1. Start all the application required to run the board in master mode, which means
a. The board runs as PTP master
b. The board runs the demo application in master mode (i.e. publishes OPC UA data - see
section below for details about the demo application)
c. The board can generate packets to simulated network load conditions
2. Start all the application required to run the board in slave mode, which means
a. Theboardruns as PTP slave
b. The board runs the demo application in slave mode (i.e. subscribes to OPC UA data - see
section below for details about the demo application)

https://www.mankier.com/8/ptp4l

Control script can be invoked with the following options

1. To start the board in master mode
demo/scripts/control.sh master on

2. To stop a board running in master mode
demo/scripts/control.sh master off

3. To start the board in slave mode
demo/scripts/control.sh slave on

4. To stop a board running in slave mode
demo/scripts/control.sh slave off

5. To start network traffic simulation
demo/scripts/control.sh netload on

6. To stop network traffic simulation
demo/scripts/control.sh netload off

2.6 Software folders

All the applications and scripts can be found on the board in the folder

/home/user/demo

2.6.1 Binfolder

All the executables are in this folder. In particular, the following files can be found here
- ptp4k: customized PTP stack
- kspi:command line utility to read and write Kairos registers
- ktsn:command line utility to configure Kairos Qbv scheduler
- kfdb: command line utility to configure Kairos FDB entries
- ethtool:command line utility to access Network card statistics
- udpsend: demo application that sends UDP packets
- udprecv: demo application that receives and decodes UDP packets
- rawsend: network traffic generator

2.6.2 Config folder

This folder stores the PTP configuration files, namely
- slave.cfg: configuration file to run ptp4k as a slave clock
- master.cfg: configuration file to run ptp4k as a master clock
- boundary.cfg: configuration file to run ptp4k as a boundary clock
- gbv.txt: Qbv scheduler configuration file

2.6.3 Scripts folder

This folder includes some bash scripts that invoke executables in the proper way. In particular, here you
can find

control.sh: script that starts PTP master/slave clock, configures VLANSs, enables Qbv
scheduler, starts network traffic simulation, etc

ptp-master.sh: script that starts PTP stack as master clock

ptp-slave.sh: script that starts PTP stack as slave clock

ptp-boundary. sh: script that starts PTP stack as a boundary clock

3 Demo application

The Kairos development kit can run a demo application to show highlight the capabilities of a TSN-
capable switch. To run the demo application, you need two development kits: the first one running in
master mode (i.e. sending out packets) and the second one running as slave (i.e. receiving packets and
gathering statistics)

Before taking an in-depth look at how demo application works, we need to introduce the physical and
logical connections required to run the application itself

3.1

Hardware connection

To setup the demo bench, you need to

1.

2.
3.
4

Connect Kairos' ETHA port on the master board to the Kairos’ ETHA port of the slave board.
Packets whose delivery time is measured are sent over this link

Connect the eth0Q port of the master board to the switch device

Connect the ethQ port of the slave board to the switch device

Connect a PC to the switch device

3.2 Logical connection

The demo application uses two logical connections that share the physical link between the ETHA ports
of the two boards
1. Abest-effort connection on port lan0. PTP packets are sent through this network interface
2. Two Qbv scheduler-controlled connection on 1an0.33 and lan0.77. These are two virtual network
cards where packets are tagged with a specific VLAN ID. Kairos chip will be programmed to
treat packets tagged with VLAN priority 7 as high-priority traffic and packets tagged with VLAN
priority 3 as low priority traffic

Master board Slave board
Low-priority traffic

lam0

| Metwork
I " cable I,

M lan0.33 \ " lan0.33
UDP packets { L_\—-—_________________._._--—""'*'

LDP packets
receiever

cender

—

b lan0. 77 lan0. 77

}

h 4

High-priority traffic

MNode 1S
application

L

3.3 Demo description

UDP packets are sent on logical connections lan0.33 and lan0.77. On the slave board, an application
listens for incoming UDP packets and collects statistics for the received packets. Such statistics are
shown by a node JS web application.

Under normal network traffic conditions, no differences can be seen in the packet delivery time. But if
network is flooded with disturbing traffic, then the performances of the low-priority network drops
whereas the performances of high-priority TSN traffic is not affected

This is just an example of how traffic can be shaped by means of the Kairos chip

3.4 Walkthrough guide

3.4.1 Rundemo application with no network traffic

1. Switch on the master board (since boards are shipped with a fixed IP address, leave the slave
board switched off to avoid conflicts)

2. Open a browser at the following address
http.//172.16.0.2:3000

3. Gotothe “Settings” page

APTP Status v Packet statistics =Bettings

Kairos web configurator

Network interfaces

B cmo O[172.16.02 |[255.255.285.0 | Bsave

Working mode

None

Master

QO slave

Application control

4. Change the default IP address to 172.16.0.3 and click “Save”

. APTP Status 4 Packet statistics SBettings
Kairos web configurator

Network interfaces

=) 1721603 |[255.255.255.0 | Bsave

&

Working mode

None
() Master

QO slave

Application control

5. Select ‘Master” in the "Working mode” section

. MPTP Status / Packet statistics 2Bettings
Kairos web configurator

Netw%rk interfaces

B ctho 01721603 |[255.255.255.0 | Dsave

Working mode
O None

Master
QO slave %
Application control

1 Launch UDP Sender

1 Start network load

6. Click “Start UDP sender” button

http://172.16.0.2:3000/

10.

11.

. MAPTP Status ~ Packet statistics SKettings
Kairos web configurator

Netw%rk interfaces

B <o Of172.16.03 |[255.255.285.0 | PRsave

Working mode
O None

Master

O Slave

Application control
1 Launch UDP Sender
3 Start network load %

Open a browser at the following address
http.//172.16.0.2:3000

Go to the “Settings” page

Select “Slave” in the “Working mode” section

. MAPTP Status ~ Packet statistics 2 Bettings
Kairos web configurator

Network interfaces

B o [Of172.16.02 |[255.255.255.0 | Asave

Working mode
O None

O Master

Slave
App]ica%rol

1 Launch UDP Receiver

Click “Start UDP receiver” button

. APTP Status ~ Packet statistics ZBettings
Kairos web configurator

Network interfaces

B cto Ol17216.02 ||255.255.255.0 | Bsave

Working mode
O None

() Master

Slave

Application control

1 Launch UDP Receiver
\\/ ’

Go to “Statistics” page. You should see that there are no dropped packets and packets delivery
time is the same for both low-priority and high-priority connections

3.4.2 Activate network traffic

1. Open a browser at the following address
http://172.16.0.3:3000

2. Gotothe “Settings” page

3. Click “Start network load” button

APTP Status 4 Packet statistics =Bettings

Kairos web configurator

Netw%rk interfaces

B o []172.16.0.3 |255.255.255.0 . Psave

Working mode
O None

Master

QO slave
Application control

1 Launch UDP Sender

1 Start network load %

4. Open a browser at the following address
http://172.16.0.2:3000

5. Go to “Statistics” page. You should see that there are many dropped packets on the low-priority
connection

) APTP Status ¥ Packet statistics 2Bettings
Kairos web configurator

Packet statistics

[TCT - dropped [___] TC3 - dropped

Dropped packets

0 100 200 300 400 500 600 700 800 900 1000

Packet number

4 Boundary clock support
ptp4k implements boundary clock. To test this feature, you need three boards connected in this way
e Connect lan0 of board that should be used as a master clock to lan0 of the board running as
boundary clock

e Connect lan1 of board running boundary clock to lan0 of the board running as slave clock

Hardware connections are shown in picture below

SR 0 T
o - L} &

5 Setting up the build environment

To work with the development kits a Linux operating system with a properly configured build
environment is required. The simplest way to get started, especially for Windows users, may be using
one of our development virtual machines. We provide a VirtualBox VM preconfigured with:

o Yocto workspace for building the BSP
. Preinstalled SDKs to start building your own application for the development kit
o QtCreator IDE with preconfigured target toolchains (Qt 5.9)

If you are already working on a Linux machine or you already have a Linux VM you may consider
configuring yourself the build environment instead. In this case skip this chapter and go to chapter
Compiling Yocto BSP from scratch. if you are interested in building the BSP or chapter 10 if you
are interested in building your own applications for the target.

5.1 Runningthe VirtualBox VM

You can download the Exor's VirtualBox development VM from here:

http://download.exorembedded.net:8080/Public/VirtualBoxVMs

Instructions found on this document are compatible with versions 4.x of the VM. If you are about to
use a greater version, please consider looking for an updated version of this manual.

The virtual machine comes in the OVA (Open Virtualization Archive) format. To import it on
VirtualBox go to ‘File” 2 “Import Appliance...”, select the downloaded .ova file and then click
‘Import”. At this point, VirtualBox will give you the opportunity to customize the VM, double-click on
entries to edit them.

You will notice there are two network adapters, one is set to work in NAT mode while the second one
works in bridged mode, the virtual machine will always use the bridged interface if possible and fall
back to the other only if necessary. Adjust both adapters to work with the real network interface you use
to have access to internet. Note that if the bridged adapter is not correctly configured you won't be able
to resolve the Kit hostname and IP address must be used in this case.

Appliance settings

These are the virtual machines contained in the appliance and the suggested settings of the
imported VirtualBox machines. You can change many of the properties shown by double-clicking
on the items and disable others using the check boxes below.

Description Configuration
Virtual System 1

58 Name ExorDev-VM

=] Guest OS Type @71 Ubuntu (64-bit)

{3 cPU 2

& rRAM 2048 MB

(¥ USB Controller

;I_,Ii Network Adapter Intel PRO/1000 MT Desktop (82540EM)

! Network Adapter Intel PRO/1000 MT Desktop (82540EM)
v ¥ Storage Controller (SATA) AHCI

& Virtual Disk Image CAVirtualBox VMs\ExorDev-WM\ExarDev-VM-...

[] reinitialize the MAC address of all network cards

|Re5tore Defaurts| | Import | | Cancel |

The default amount of RAM is set to 2GB but if you plan to work with Yocto, we recommend
increasing it to at least 4GB (suggested 6GB), adjusting the number of CPU cores is also a good idea.
When you're done click on “‘Import”. When import process terminates, you will be able to change VM
settings again

*'“}" ExorDev-VM [Running] - Oracle VM VirtualBox - O >
File Machine View Input Devices Help

‘# Applications Menu @ helloworld - Qt Creator

(o] helloworld - Qt Creator

File Edit Build Debug Analyze Tools Window Help

c—
—

helleworld

Welcome

WNGIENEe) | Editor | CodeStyle | Depe

The project helloworld is not yet configured.
Qt Creator uses the kit Desktop to parse the proje

File System

y |

B Select all kits
v| B Desktop

1 us01-kit wayland

1 us01-kit x11
= .
2 Unconfig... 2 us02-kit
-..ured

|

1 us03-kit

Import Build From...

G @ @ =& e crr (oesTRY)

The Linux operating system used is based on Ubuntu 16.04. The default user is:
e username: user
e password: password

To runa command with root privileges, you can use sudo (password is not required)

5.1.1 Setup aguest-host shared folder

We recommend configuring a shared folder between host andguest, it's the easiest way to
move files from and to the VM. From VirtualBox right-click on Exor's VM and select ‘Settings...” Now
go to “Shared Folders”and click the add button on the right. Configure options as follow:

Folder Path: choose the host folder to share with the virtual machine
Folder Name: must be share.

Read-only: leave unflagged

Auto mount: leave unflagged.

Make Permanent: flag this option.

g, General Shared Folders
J_J System Folders List
E Display MName Path Auto-mount Access | e
- Machine Folders @ Add Share 2 W
|IE£J Storage Transient Folders
1;_] Audio Faolder Path: | <not selected> v|
Folder Name: |share |
! Network | |
- [] read-only
Q; Serial Ports [] Auto-mount
)/ Use Make Permanent
D Shared Folders
— oK Cancel
D User Interface

The chosen folder will be available inside the virtual machine from /home/user/vM-share, a link to this
location can be also found on the VM's desktop. If the VM was already running, a restart is required

5.1.2 Configuring the SDK

To reduce the initial weight of the VM, the SDK is not shipped with it. A script named ‘Install NSOVISDK.sh”
can be found on the desktop. By just double-clicking the link on the desktop, the SDK will be downloaded
an installed.

During the installation of the SDK, QtCreator will be reconfigured and a new kit will be added.

5.1.3 UsingQtCreator

The QtCreator IDE is already installed and configured to deploy and debug applications for each
development kit. When creating a new project, please make sure to select the kit
configuration for NSOM device. If not available, make sure that the SDK has been installed using the
script that can be found on the desktop. There's also a “Desktop” kit configuration which can be used
to build your application and run it on the virtual machine instead of deploying it, useful for fast testing
and profiling.

You will find a "helloworld” sample project in /home/user/helloworld, open it with QtCreator, compile it
for your platform and press ctr1+r, @ window will pop up in the development kit.

You can find more details about configuring QtCreator in section 6.3, how to change the hostname or IP
address of the target device.

5.1.4 Compiling the BSP with Yocto

Inside /home/user/exor-yocto-4.0 you will find the preconfigured Yocto workspace for building the
BSP for your development kit. Before starting the build, please update the meta-exor layer to get the latest
version of the recipes:

$ cd /home/user/exor-yocto-4.0/git/meta-exor
$ git checkout rocko
$ git pull

See section 6 below in this document to go ahead compiling the BSP.

6 Compiling Yocto BSP from scratch.

In this section, step-by-step guide to build the BSP is provided

6.1

Setupthe build environment

If you areusingExor's VirtualBox VM you can skipthe first two steps:you will findthe exor-
yocto-4.0 folder already in the user's home (/home/user/exor-yocto-4.0).

1.

6.2

Create aworkspace directory structure:

$ mkdir -p exor-yocto-4.0
$ cd exor-yocto-4.0/

Get the source code from github repositories:

$ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > repo
$ chmod a+x repo

$./repo init -u https://github.com/ExorEmbedded/exor-bsp-platform -b rocko

$./repo sync

Setup the Yocto environment. From the exor-yocto-4.0 folder execute:

$ source git/yocto-poky/oe-init-build-env build

You should now find yourself in a newly created “build” directory located in exor-yocto-
4.0/build. The source command above

Configure Yocto by copying the provided sample configuration files. From the build
directory:

$ cp ../git/meta-exor/conf/bblayers.conf.sample conf/bblayers.conf
$ cp ../git/meta-exor/conf/local.conf.sample conf/local.conf

Now edit your conf/1ocal.conf file and set the macuInE variable to ns01-kit

MACHINE = "us02-kit"

You are now ready to build the BSP.

Optional customizations

Here are some customizations you may be interested in:

You can force Yocto to build a 32-bit SDK uncommenting the following line in the
build/conf/local.conf file:

#SDKMACHINE 2= "i686"

Uncomment following lines in the build/conf/local.conf file to be able to set the number of
threads and CPU cores you want to use for the build process:

#BB_NUMBER THREADS ?= "4"
#PARALLEL MAKE ?= "-j 4"

6.3 CompilingYocto BSP

Make sure to run following commands from your buiid folder:

1. Compile the bootloader:

$ bitbake bootloader

2. The Linux kernel:

$ bitbake virtual/kernel

3. And finally, the rootfs:

$ bitbake core-image-exor-x11

This will build the classic x11 Sato image, the one that can be found in the SD-card included with the
development Kkit.

At the end of these operations you will find build output files in build/tmp/deploy/images/nsom01:

ns0l-kit-uboot.tar.gz U-Boot raw image

nsOl-kit-kernel.tar.gz Kernel (zImage) and dtb

core-image-exor-[..]-ns0l-kit.tar.gz Root File System

6.4 Creatingthe SDK (optional)

Start the SDK build for the x11 image:

$ bitbake -c populate sdk core-image-exor-x11

The SDK installer can be found in build/tmp/deploy/sdk/exor-evm-qt5-sdk. sh.

X =XON

7 Deploy BSP on SD card

This section describes how to prepare a bootable SD-card for the development kit, for this remember
that only SD-cards with at least 4GB of space are supported.

Also note that following operations can be dangerous, harm your system or cause loss of data. Do
not blindly execute these operations if you don’t know what they do.

For Linux users we will assume below the SD-card device is named /dev/sdb and its partitions
/dev/sdbX, change these to the actual names.

7.1 UsinganSDcardimage

We provide a fully working 4GB image containing the x11-sato environment to let you start using the
kit in no time. Note that by using this option, even with a more capable SD, only ~4GB of space will be
available to the system.

Download the latest disk image for your development kit:

http://download.exorembedded.net:8080/Public/nsom01l/sdcard-images/

From a Linux shell:

unzip SDcard-image-4gb.zip
dd if=SDcard-image-4gb.img of=/dev/sdb bs=64k # sync

Your SD-card is now ready to be used on the development kit.

ID No. THW-xx - REV. 0.0
©2018 EXOR International S.p.A. - Subject to change without
notice

29

7.2 Using BSP packages

=XON

To create a bootable SD card from the BSP packages build in chapter 6, please follow these steps

Create the SD-card partition layout :

umount /dev/sdb*
SIZE="fdisk -1 /dev/sdb | grep —-ml Disk | awk '{print
$5}'> # CYLINDERS=S((S(($SIZE)) / 255 / 63 /512))
sfdisk --force -D -H 255 -S 63 -C SCYLINDERS /dev/sdb <<
EOF 1,5
6,$((SCYLINDERS - 10
)) $((SCYLINDERS - 4
)),,a2 EOF
mkfs.vfat -n BOOT /dev/sdbl # mkfs.ext4 -L ROOT /dev/sdb2

Mount partitions. Execute following operations:

// Mount partitions if not already mounted

mkdir /media/BOOT

mount /dev/sdbl

/media/BOOT # mkdir
/media/ROOT

mount /dev/sdb2 /media/ROOT

Now run these commands to perform the actual deploy

// Deploy files to SD-card for nsO0l-kit

mkdir /media/BOOT/boot

tar xzvf nsOl-kit-kernel-[..].tar.gz -—-no-same-owner -C /media/BOOT/boot
tar xzvf core-image-exor-[..].tar.gz -C /media/ROOT

tar xzvf nsO0l-kit-uboot[..].tar.gz

dd if=u-boot.imx of=/dev/sdb bs=1k seek=1

sync

ID No. THW-xx - REV. 0.0
©2018 EXOR International S.p.A. - Subject to change without

notice

30

X =XON

8 Deploy BSP oneMMC

This section describes how to deploy the BSP on eMMC and boot from it. All the kits have the
possibility to boot without an SD-Card except for the us03-kit.

On the iIMX6Q the location where the bootloader needs to loaded is defined by OTP fuses that on the
us03-kit are already set to use the SD-Card. Once the bootloader is loaded into ram the roots used
will still be the one on the eMMC and the SD-card could be removed. For more information on OTP
fuse programming please refer to NXP processor reference manual (chapter 5 Fusemap and chapter
46 On-Chip OTP Controller):

https://www.nxp.com/docs/en/reference-manual/IMX6 DQRM. pdf

To deploy the BSP to the internal eMMC it is required to define the partition layout and then modify
the bootloader environment in order to inform the u-boot on where to look for all the necessary files.
Here, for demonstration purposes, we will use the simplest layout, a single ext4 partition. Following
instructions needs to be executed on the development kit via ssh, it requires you have a working SD-
card and these files available on it:

e Thebootloader image, uboot . img

(] TherOOﬂé,core—image—exor.tar.gz

e Kerneland dtb ora kernel.tar.gz

Here are the steps to follow:
1. Reformat the eMMC device to have a single partition and create the ext4 filesystem. The

eMMC device is defined as /dev/mmcb1k1 on all the development kits except for the us02-kit
where it's /dev/mmcb1k0, for this reason the operation is slightly different for the latter.

// Format eMMC and mount rootfs partition
umount /dev/mmcblklp*
SIZE='fdisk -1 /dev/mmcblkl | grep -ml Disk | awk '{print

$5}) '

CYLINDERS=S (($(($SIZE)) / 255 / 63 /512))

echo -e "o\nn\np\nl\n2\n\nw" | fdisk -H 255 -S 63 -C S$SCYLINDERS
/dev/mmcblkl

mkfs.extd4d /dev/mmcblklpl
mkdir emmc
mount /dev/mmcblklpl emmc

2. Deploy rootfs and kernel. Make sure at the end emmc /boot contains both a zimage and a dtb.

tar xzvf core-image-exor.tar.gz -C emmc

tar xzvf kernel.tar.gz -C emmc/boot // Or just copy zImage and dtb
to emmc/boot

sync

3. Deploy the bootloader

// Deploy bootloader on eMMC
dd if=u-boot.imx of=/dev/mmcblkl bs=512 seek=2

Now if you remove the SD-card the bootloader written to the eMMC will be executed but the system
won't boot because the u-boot will still look for files inside the SD-card.

ID No. THW-xx - REV. 0.0
©20718 EXOR International S.p.A. - Subject to change without notice

31

X =XON

To make it work the bootloader environment must be changed. To do this connect to the kit's serial
port using a client like putty and while keeping pressed Ctrl+C on the console power off and then on
the device. A prompt should appear.

From here execute these commands:

// U-boot environment changes

setenv mmcboot 'run findfdt; mmc rescan; ext2load mmc 1:1 ${loadaddr}
/boot/zImage; ext2load mmc 1:1 ${fdtaddr} /boot/S${fdtfile}; setenv mmcroot
/dev/mmcblklpl; run mmcargs; bootz S{loadaddr} - ${fdtaddr};'

saveenv

To restore the bootloader's environment and boot again from SD-card stop the machine at the u-
boot's prompt again and type:

env default -a
saveenv

ID No. THW-xx - REV. 0.0
©2018 EXOR International S.p.A. - Subject to change without
notice 32

X =XON

9 Setupthe workspace for building applications

This section describes how to setup a 64bit Linux PC or virtual machine to be able to build applications
for the target development kit. Our virtual machine and our Docker image are already preconfigured
and ready to use, these steps can be skipped when using one of these solutions.

9.1 Cross development environment setup

Download the latest v4.x SDK from here:

http://download.exorembedded.net:8080/Public/nsom01/SDK

Execute the SDK installation file exor-evm-gt5-sdk. sh (requires admin privileges):

$ cd /opt
$ sudo chmod a+x ./ exor—-evm-gt5-
sdk.sh $ sudo ./exor-evm-qt5-sdk.sh

You will be asked for the installation directory, press enter to use the default, /opt/exorintos/ns01-
kit/. To setup the cross-development environment for the current shell run this command (correct
the path if you have changed the default installation directory):

// Environment setup for nsO0l-kit
$ source /opt/exorintos/nsO0l-kit/environment-setup-cortexa7hf-vfp-neon-poky-linux—gnueabi

To build a simple hello world application use the arm cross compiler that should now be reachable
from your PATH:

$ arm-poky-linux-gnueabi-gcc main.c -o hello world

9.2 Connectingto the device

On each device a console is active over serial port for debugging purposes. An ssh server is also
running, useful for having a shell over ethernet or transferring files via sftp.Inboth cases
the username to useis root, N0 password is required.

If your system has an avahi client installed the kit can also be addressed by its hostname:

exorNSOlkit.local

9.3 QtCreator setup

When developing Qt applications, it may be useful to have the Qt IDE preconfigured to use the
toolchain. You can get latest QtCreator package from DIGIA here:

ID No. THW-xx - REV. 0.0
©2018 EXOR International S.p.A. - Subject to change without
notice 33

X =XON

http://download.qgt.io/official releases/gtcreator/3.3/3.3.2/gt-creator-opensource-linux-
x86-3.3.2.run

Install it in your machine:

$ sudo chmod a+x ./gt-creator-opensource-linux-x86-3.3.2.run
$./gqt-creator-opensource-linux-x86-3.3.2.run

You will find QtCreator installed in ~/gtcreator-3.3.2. Start it:

$ ~/gtcreator-3.3.2/bin/gtcreator

We are now going to setup the QtCreator build kit for the target.
From Tools menu select ‘Options...” = “Build & Run’, then follow these steps:

1. Inthe “Compilers”tab click on ‘Add” - “GCC" > “C" and select the cross compiler picking it
from the SDK installation folder. If the SDK has been installed in the default location the correct
path IS /opt/exorintos/ns0l-kit/sysroots/x8 6 _64-pokysdk-linux/usr/bin/arm-poky-
linux-gnueabi/arm-poky-linux—-gnueabi-gcc
Optionally edit “Name” to give a more meaningful name for the entry, select “arm-linux-
generic-elf-32bit"as ABI and finally click “Apply”

2. From the same tab, click ‘Add” = “GCC" < “C++"and select /opt/exorintos/ns01-
kit/sysroots/x86 64-pokysdk-linux/usr/bin/arm-poky-linux- gnueabi/arm-poky-linux-

gnueabi-g++ instead. Again, select ‘arm-linux-generic-elf-32bit” as ABI and click “Apply”

Ot Options %E ; g
Filter Build & Run
@ Environment General | Kits | QtVersions | Compilers | Debuggers = Qbs | CMake
Text Editor Name -] Type 5 Add -
GCC (C++, x86 64bit in fusr/bin) GCC
g FakeVim GCC (C++, x86 32bit in fusrjbin) GCC Clone
GCC 5 (C++, %86 64bit in fusr/bin) GCC
GCC 5 (C++, x86 32bit in jusr/bin) GCC Remove
@ Help GCC 7 (C++, x86 64bit in /usr/bin) GCC
GCC 7 (C++, x86 32bit in fusr/bin) GCC
{} c++ GCC 7 (C++, x86 64bit in fusrfbin) GCC
GCC 7 (C++, x86 32bit in fusr/bin) GCC
- i ¥ Manual
4‘1 Qt Quick g
] GCC (ns01-kit) GCC
()* Build & Run - it
GCC (ns01-kit) GCC
Q Debugger -
X Designer
Name: GCC (ns01-kit)
[E® Analyzer
Compiler path: !Fopt.fexorintos.fnsOl—kiUsysraols;x&ﬁ_ﬁ:l—pokysdk—IinuxJusr.n’bin.farm-poky—limi Bi
[
Version Control
Platform codegen flags:
n Devices Platform linker flags:
Code Pasting ABI: arm-linux - -

@ Testing

X cancel W Apply

3. From “Debuggers”tab, press ‘Add” and select gdb from the same directory. The default
location is /opt/exorintos/ns0l-kit/sysroots/x86 64-pokysdk-linux/usr/bin/arm-poky-
linux-gnueabi/arm-poky-linux-gnueabi-gdb Optionally edit “Name”, then click ”App/y”

ID No. THW-xx - REV. 0.0
©2018 EXOR International S.p.A. - Subject to change without
notice 34

http://download.qt.io/official_releases/qtcreator/3.3/3.3.2/qt-creator-opensource-linux-x86-3.3.2.run
http://download.qt.io/official_releases/qtcreator/3.3/3.3.2/qt-creator-opensource-linux-x86-3.3.2.run
http://download.qt.io/official_releases/qtcreator/3.3/3.3.2/qt-creator-opensource-linux-x86-3.3.2.run

X XON

-
-— L

Ot Options A+ E X

|Filter Build & Run

@ Environment General = Kits = QtVersions = Compilers | Debuggers | Qbs = CMake

Text Editor Location | Add

g FakeVim fusr/bin/gdb

@ Help
{J c++
4 Qt Quick

()* Build & Run

Q Debugger
1 Designer
[E8 Analyzer

Code Pasting
@ Testing

Jopt/exorintos/ns01-kit/sysroots/x86 64-poky

sdk-linuxfusr/binfarm-poky-linux-gnueabi/arm-|

|
| Clone |
|

oky-linux-gnu fIGENENE

Mame:

|GDB (ns01-kit)

Path:

i-linuxfusr/binfarm-poky-linux-gnueabi/arm-poky-linux-gnueabi-gdb | | Browse...

Type: |

ABIs: |

Version: |

Working directory: |

|| Browse...

’ oK “ X cancel || o Apply |

4. From ‘Qt Versions”tab, press ‘Add” The default path to selectis: /opt/exorintos/ns01-

kit/sysroots/x86 64-pokysdk-linux/usr/bin/gmake. QtCreator should automatically
recognize the gt version selected. Press "Apply”

o

|Filter |

@ Environment

Text Editor
L8 Fakevim
@ Heb

{J c++

/| atquick
@& Debugger
Designer
Bl Analyzer

Code Pasting

@ Testing

Options A EN
Build & Run
General | Kits | OtVersions | Compilers Debuggers Qbs = CMake
MName ~ gmake Location | Add.. |
¥ Auto-detected
© Qt5.5.1inPATH (qt5) /usr/lib/x86_64-linux-gnu/gts/bin/gmake | Remove |

Qt 5.9.3 in PATH (gt59) Jopt/gt59/binfgmake

* Manual

Qt 5.9.3 in PATH (qt59) Jopt/qt59/bin/gmake

Qt 5.9.4 (ns01-kit)

Jopt/exorintos/ns01-kit/sysroots/...4-poky

Version name:

|0t %{Qt:Version} (ns01-kit)

gmake location: jopt/exorintos/ns01-kit/sysroots/x86_64-pokysdk-linux/usr/bin/qt5/gmake = Browse... |

Qt version 5.9.4 for Embedded Linux

Details +

’ oK H X cancel | o Apply |

This step is required for configuring automatic application deploy to the target.

Move from ‘Build & Run” section to “Devices” Click "Add”, select “Generic Linux Device” and press

“‘Start Wizard”. Fill in this information:

e Name:the device name, ns01-kit

ID No. THW-xx - REV. 0.0

©2018 EXOR International S.p.A. - Subject to change without

notice

35

e Hostname: exorNs0Olkit.local

e Usemame: root

e Authentication type: set to "Password”

e Password: leave empty, no password is needed

=XON

Click ‘Next” andthen ‘Finish” Qt Creator will attempt a test connection, if the device is
already powered on and reachable everything should be ok.
If for any reason you cannot reach the target by its hostname, make sure avahiis installed on
your system or edit ‘Host name” to set the actual board IP address instead. Press on “Test”

button to check the connection again.

e

Options [+ O x
Filter Devices
@ Environment Devices | Android QNX
Text Editor Device: | ns01-kit (default for Generic Linux) - Add...
% FakeVim General Remnye
@ Help Name: ns01-kit
{} Ct++ Type: Generic Linux Test
Auto-detected: No -
P ., Show Running Processes...
,‘| Ot Quick Current state: Unknown
.) Deploy Public Key...
IQ}" Build & Run Type Specific
@ Debugger Machine type: Physical Device
f Designer Authentication type: e Password Key Key via ssh-agent
Host H orNS01kit.local| SSH port: |22 = Check host ke
[E@ Analyzer e F‘iu 35H po cl y
. Free ports: 10000-10100 Timeout: | 10s =
Version Control
Username: root
Password: show password
Code Pasting Create New...
Testing GDB server executable: |Leave empty to |
oK X cancel o Apply
. . s, ” . wyip
6. Finally move again to ‘Build & Run” section, ‘Kits” tab. Combine all pieces together in a new kit.

Click "Add" and fill in as follows:

e Name: choose a name for the kit

e Device Type: select “Generic Linux Device”

e Device: select the device configured in step 5

e Sysroot: if the SDK is installed in the default location, these are the paths to select:
/opt/exorintos/ns0l-kit/sysroots/cortexa7hf-neon-poky-linux-gnueabi

e Compiler:select C and C++compilers by name as configured in step 1and 2
e Debugger: select debugger by name as configured in step 3

e (Qt version:select Qtversionadded in step 4

ID No. THW-xx - REV. 0.0
©2018 EXOR International S.p.A. - Subject to change without
notice

36

X =XON

Ot | Options A Ex
§ |Filter | Build & Run
| @ Environment General | Kits | Ot Versions Compilers Debuggers = Qbs CMake
. [
Text Editor Name | Add |
! Auto-detected |7|
; ¥ Manual Clone
| g Fakevim @ Desktop (default) e —
] | Remove |
@ e e
| Make Default |
{J e+ —
i 4 Qt Quick Name: \ns01-kit | |E-|
Il (¢ Build & Run File system name: \ |
] Device type: Generic Linux Device -
' a Debugger P ‘ |
. Device: ' ns01-kit (default for Generic Linux) ~ || Manage... |
1 Designer
Sysroot: jopt/exerintes/ns01-kit/sysroots/cortexa7hf-neon-poky-linux-gnueabi || Browse... |
Analyzer
j B Analy c: [6CC (nso1-kit) 7] anage]
. Compiler: Manage...
{ [version Control C++: |GCC (ns01-kit) S
' Devices Environment: No changes to apply. | Change... |
I Code Pasting Debugger: | GDB (ns01-kit) ~ || Manage... |
3 @ Testing Qt version: | Qt 5.9.4 (ns01-kit) ~ || Manage... |
I Qt mkspec: linux-ns01-kit-g++ |
CMake Tool: | Manage... |
CMake generator: <none> - <none>, Platform: <none>, Toolset: <none>
CMake Configuration CMAKE_CXX_COMPILER:STRING=%{ Compiler:Executable:Cxx}; CMAK... | Change... |
Additional Qbs Profile Settings | Change... |
’ PoK] | Xcancel || « Apply |

9.4 Application deployment

Before starting here, make sure QtCreator has been correctly configured for application deployment
and that the development kit is reachable.

1. First, let's create a dummy Qt project. Select ‘File” & “New File or Project..” > “Qt Widgets
Application” and click “Choose”. Enter a project name, press ‘Next”. Make sure that in the ‘Kit
Selection” wizard dialog the SDK kit for the target is selected.

2. Make sure the target kit currently in use by checking in the menu on the left shown below:

ID No. THW-xx - REV. 0.0
©2018 EXOR International S.p.A. - Subject to change without

notice 37

X =XON

Project: TestApplication
Deploy: Deploy to Remote Linux Host
Run: TestApplication (on Remote Device)

Kit Build
Desktop Debug

Exor-sDK Release

Type to locate (Ctri+K)

3. Now edit the .pro project file to add these two lines:

target.path = /home/root/
INSTALLS += target

This will define where the application will be installed on the device (/home/root)

1 TestApplication.pro @ TestApplication - Ot Creator
Edit Build Debug Analyze Toocls Window Help

Projects * T. & B @ « !; TestApplication.pro =
|~ . TestApplication | You can also make your code fail to compile if you

In order to do so, uncomment the following line.
You can also select to disable deprecated APIs only
DEFIMNES += QT_DISABLE_DEPRECATED_BEFORE=0x060080

B TestApplication.pro
* [inl Headers
h mainwindow.h

* = Sources

¥ B B I

&= main.cpp
= mainwindow.cpp SOURCES +“.1"
- i Forms main.cpp \

L . mainwindow.c
mainwindow.ui pp

HEADERS +=
mainwindow.h

FORMS += \
mairmwindow.ud

Target deploy support:
target.path = /home/root/
INSTALLS += target

39

4. Finally press the green ‘play” buttoninthe menuon the left or use the “Ctrl+R" shortcut.
QtCreator should compile the application and an empty Qt window should appear on the
device

ID No. THW-xx - REV. 0.0
©2018 EXOR International S.p.A. - Subject to change without
notice 38

X =XON

10 Building the development kit applications

After setting up the build environment, we can build the applications included in the Kairos
development kit from the source code

10.1 Folders structure

The provided source code is organized (starting from the user's home directory) are follow

workspace
PTP stack. This a customized version of the ptp4l Linux
ptpdk application
Qt project that contains all the applications to access Kairos
sdk chip

Kairos registers access library

kairos rw

Command line utility to read and write Kairos registers

kspi
S Command line utility to configure Kairos FDB entries
tsn Command line utility to configure Kairos TSN scheduler
pubsub
Demo application that runs on the master board (OPC UA
udpsend pubHsheO
Demo application that runs on the slave board (OPC UA
udprecv subscriber)
Application to generate traffic on the network
rawsend
Web

Angular project of the frontend of the web interface

kairos-node

Node JS backend application of the web interface

kairos-web

10.2 Building ptp4k
Ptp4k is provided as QtCreator projects. To build the application,

1. Launch QtCreator
2. Open QtCreator project ptp4k.pro located in the folder workspace /ptpak/ptpdk
3. Build and run the application as explained in section “Application deploy”
ID No. THW-xx - REV. 0.0
©2018 EXOR International S.p.A. - Subject to change without
notice 39

X =XON

10.3 Building kspi, ktsn and kfdb
kspi and ktsn are provided as QtCreator projects. To build the applications,
4. Launch QtCreator

5. Open QtCreator project sdk.pro located in the folder workspace/sdk
6. Build and run the application as explained in section “Application deploy”

10.4 Building web interface

10.4.1 Building the backend

Node JS applications are not built. To run the backend, simply invoke node followed by the name of
the javascript file to execute

First, install node version 8 or greater

$ sudo apt install curl
$ curl -sL https://deb.nodesource.com/setup 10.x | sudo -E bash -
$ sudo apt install nodejs

Check if node is correctly installed

$ node --version

You can now run the backend application

$ cd workspace/web/kairos-node
$ node ./kairos.js

10.4.2 Building the frontend

To build the frontend application, Angular is required. To install angular, first check if npm is properly
installed

$ npm --version

If the above command does not return any error, you can install Angular

$ sudo npom install -g @angular/cli

Finally, check if Angular has been installed correctly

$ ng --version

ID No. THW-xx - REV. 0.0
©2018 EXOR International S.p.A. - Subject to change without
notice 40

X

=XON

> Terminal - user@ExorDev-VM: ~/workspace/web/kairos-node

File Edit WView Terminal Tabs Help

Processing triggers for man-db (2.7.5-1)

Setting up nodejs (10.16.1-1lnodesourcel)

user@ExorDev-VM: $ ng --version

Angular CLI: 8.2.0
Node: 10.16.1
0S: linux x64
Angular: undefined

Version
@angular-devkit/architect .0 (cli-only)
@angular-devkit/core (cli-only)

@angular-devkit/schematics (cli-only)
@schematics/angular {(cli-only)
@schematics/update .0 (cli-only)

user@ExorDev-\VM: 3

Now the frontend application can be built

$ cd workspace/web/kairos-web
$ ng build --prod

AT R

Packaged files are now available in workspace /web/kairos-web/dist/kairos-web. 10 deploy the

frontend application, copy all the files in the fi1es subfolder of the backend

41

X =XO~N
11 OpenHMI Portable runtime

OpenHMI is a software suite designed to offer a complete HMI solution with client-server
architecture.

It is made of several software components, integrated into a unique application. OpenHMI applies
the latest available technology developed for HMI in industrial automation to every situation where a
user interface is required. The suite includes commissioning tools, to allow easy maintenance and
configuration of multiple remote units, and both desktop and runtime engineering software for
application development.

The portable version of OpenHMI is a standard Linux OpenHMI runtime provided as a chroot-based
container designed to run under Linux 32bit ARM platforms.

The portable OpenHMI runtime is provided for rapid prototyping and evaluation purposes and
contains a subset (Codesys V3/, Modbus and the internal variables protocol) of the available
protocols. For example, serial protocols are not supported, since the serial ports on the evaluation
kits are only meant for debugging purpose.

A closer integration with the final target system and access to the complete set of protocols can be
achieved on demand during the product engineering phase.

11.1 OpenHMI portable runtime installation

By default, OpenHMI in preinstalled on both the standard SD image and the rootfs generated by our
standard Yocto recipes.
The portable can however also be downloaded separately from here:

http://download.exorembedded.net/Public/OpenHMI/
Then to install and run it from ssh follow these steps:

1. Copy itinto the Kit.

scp jmobile-[..]-portable-devkit.tar.gz root@[hostname]:~

2. Connect to the kit:

ssh root@[hostname]

3. Now, from the remote shell, untar the package in a folder with write permissions (e.g. /opt)
tar xzpf jmobile-[..] -portable-devkit.tar.gz
rm -rf jmobile-[..]-portable-devkit.tar.gz

4. Start OpenHMI

jmobile portable/run.sh

11.2 Run OpenHMI portable runtime at boot

In both cases it's possible to configure the BSP to automatically start OpenHMI Runtime at boot:

1. Remove the script xserver-nodm:
update-rc.d -f xserver-nodm remove

2. Add a new script to the init sequence:
echo “/home/root/jmobile portable/run.sh &” > /etc/init.d/jmobile
chmod a+x /etc/init.d/jmobile
update-rc.d jmobile defaults 99

ID No. THW-xx - REV. 0.0
©2018 EXOR International S.p.A. - Subject to change without
notice 42

X =XON

11.3 OpenHMI Studio quick start guide

To download a free trial of OpenHMI Suite go to our web page dedicated to development kits on
exorint.com:

https://exorint.com/product-category/embedded/dev-kits/

Select the device you are working with then, from the “Download” section, download the latest
version of OpenHMI Suite. After installation, start OpenHMI Studio and create a new project from
‘File” > "New..”

@ OpenHMI Studio - m| X
P

penHMI

A JMobile softwars

—

Location: | c:Wsersnicolo.ongaro\Documents\OpenHMI Scite workspace =]

Enter a project name, select a location folder and click on “Next”. Select now the correct target
corresponding to the board (ns01devkit):

NOTE: please use only lower-case letters and numbers for the project name

ID No. THW-xx - REV. 0.0
©2018 EXOR International S.p.A. - Subject to change without
notice 43

X =XON

Project Wizard X

Device %

B uS01 Dev Kit Device type: EK04_LinuxOE
M 1502 Dev Kit Project size: 60 MB (max)
M 1503 Dev Kit

M nS01 Dev Kit

@ nS01 OpenHMI 5"

Back | [Fnsh][concel |

The goal is to create a project simply consisting of an increasing numerical counter.
From the “ProjectView” pane located on the left, click “Protocols”. Then click the “+” sign to add a new
protocol and select “Variables” as shown in the figure below:

i File Edit Run Format View Window Help

+ - AV + = A vI[E

E|- Project3 ~ |PLC | Configuration | Dictionaries | Enable Offline Al

& Project propertie » [Variables:pratl = CigVer=1 None available... [m]
=1 Pages
=R Page1

- Dialogs
- Templates
EHE® Web
™ Pages

= Templates
- Dialogs
- Config
£\ Protocols
[+l Tags
- Trends
-{=h Reports

A Alarms
- Events Buffer
-5 Scheduler
% MultiLanguage
-8 Screen Saver
-0y Database Link: v
< b

malpoalgn &7 e

a|e9jabpin &

Bauslajey s50/0 Bel M

“,n

In the left panel, select “Tags”. Press the “+” sign and add an unsignedShort tag named “Tag1”.

ID No. THW-xx - REV. 0.0
©2018 EXOR International S.p.A. - Subject to change without
notice 44

Variables %
Variables
Data type Arraysize Conversion
| unsignedShort v|] +-

| 0K | | Annulla Applica

This variable will represent our counter

I File FEdit Run Format View Window Help

B X 7 tpager | Protocols Tagst x|
+ = AV | X o] ||Vanab\es protl v|@ =
B- Project3 ~ |Name Group | Driver | Address | Encoding ICumment

@ Project propertie: » [Tagi Variables:protl Tag1 unsignedShor Variables
E—J'?‘ Pages
= AR Page1

= Dialogs
% Templates
56 Web
i Pages
¥ Templates
.. Dialogs
=+#® Config
-4 Protocols
=21 Tags

"3 Indexed Tac
- Trends
-{= Reports
- Alarms

- Events Buffer

¥ Scheduler
-2 MultiLanguage
- Screen Saver v

>

malpoalgn 5.

la|E9 jaGpin, &

o
=1
Q
=
@
@
)
=
@
@
E
E
@

>

Since the Kairos development kit does not have a local display, we need to use web pages. Web
pages show their content in any browser
In the left pane, right-click on “Web” - “Pages”, then click “Insert page...”

ID No. THW-xx - REV. 0.0
©2018 EXOR International S.p.A. - Subject to change without
notice 45

+ — AV X B M| >] [s vaiblesprott
Name oup

&
Driver Address

=88 Projectl

&3 Project properties 1 Va o ag u Variables
4 pages
- 1: Pagel
- Dialogs
¥ Templates

~€} Protocols
#-[Z] Tags

& Trends

@ Reports

A Alarms

#® Events Buffer
T Scheduler
% MultiLanguage
- screen Saver
-k Database Links
[Data transfers
(-4 Interfaces

5 Security

% Recipes
 Dictionaries.
% Keypads

Add a numeric field widget to the project’s page by dragging it from the Widget Gallery (Widget
Gallery is located on the right):

ACAREICN i Langl

'._m Protecals. m”
AT A— i S R g FUTT Mixmmbdafda-as B B - =
@ roo= ‘lioo-20@0 G rmbmen =~ = s A-» s uE==

B 1: Pagel
7 Dialogs Labd
% Templates
= web
B9 Pages 99&99

- B§l MobilePage1
~ie% Templates
- Dialogs
2 Config
£\ Protocols
-2 Tags
B Trends
i Reports
-4 Alarms
- g Events Buffer
- Scheduler
@ MultiLanguage
8 screen Saver

[, Database Links
Data transfers
-4 Interfaces.
-i4 security
- Recipes
- Dictionaries
E-F% Keypads
Bl Alphabet
‘Bl Calendar
B3 Numeric

ID No. THW-xx - REV. 0.0
©2018 EXOR International S.p.A. - Subject to change without
notice 46

X =XON

i File Edit Run Format View Window Help
'Jmm @ P i DR p 7
7| R 2 7 Pagel | Protocols | Tags” WF ~ Properties
gt -Eav RAQAA MM] X L[] DG B m™) red T 88
Egg1efpagﬂ ‘Taoce -2 032 &% ot [tom e A~p 7 U= E:::’e'“‘*“
 Diloqs e For Numeric
™ Templates De
= Web |2
- Pages.

B ‘B§ MobilePage1
I Templates
~I™ Dialogs
- Config
~€\ Protocols

=] Tags
] B Trends
! @ Reports
[A Alerms

i Events Buffer
% Scheduler

% MultiLanguage
A Screen Saver
(% Database Links
-3 Data transfers.
-4 Interfaces
iy Security
1 ~I™ Recipes
- Dictionaries
-F® Keypads

B alphabet
B Calendar

B Numeric
v

Ready | Jid field1 |x.259_y:125 w50, hi20 | CAP| NUM| SCR]_z

|
%

i
&

11819 19BpIA k=

MalAl8l

ol
[

Keypad Numeric
Events

,aaﬁma;;g ssm’g Be) x

Double click on the numeric filed and select “Tag1”to bind the widget to the tag's value:

[field1.value ®

Source: @ Tag O Aless O System O Widget O Recipe

[P- Search] T Fiter by: Protocal: [] Show all tags =

Data Type Tag name Property Value
4 \ariables:protl Container
— Tagl unsignedShort Tagl
Please salect an item.
® Read Only O Read/Write O Write Only Ftems used: 1/10000 Array index 0 < B3
« Formula |

£ Saling |

. Bit/Byte Indexing |

- Color Palette |

ID No. THW-xx - REV. 0.0
©2018 EXOR International S.p.A. - Subject to change without
notice 47

X =XON

In the left pane, double click “Scheduler”. Add a new scheduler by clicking the “+” sign in the toolbar.

In the “Type” column, select “HighResolution”. In the “Action” column, click the button with the ellipsis.
This will open the “Action List” form. Here,

1. Browse the actions tree and select “Step Tag”

2. Click the "+" sign close to “TagName” and select the tag “Tag1”
3. Enter “1"in the “Step” field
4. Click "OK"to confirm changes
Action List
ActionList = =— M W
" StepT agl_TaghgrT... Action
&H & Action Properties
- Tag ” = StepTag
""_[lfata-lr“;ﬂ'f‘jﬂ Taghame Project:_TagMar;Tagl;Tag +
- Toggle
... SetBit Step 1 +
.. ResetBit Do not step over| false +
- Write Tag StepLimit 0 +
- ActivateGro
- DeactivateGroup
- EnableNode
- ClearRetentive Memory Step ~
1. Cuckam ¥ Step can be positive or neaative. format should 4
Ok Cancel

The project is now ready and can be downloaded to the Kairos development board.

Make sure the Kairos development kit is powered on, properly connected to your network and that
OpenHMI runtime is running.

Click the “Download to Target”icon in the toolbar (or press the shortcut Ctrl+D).

i File Edit Run Format View Window Help
L H G o B e 2 R | T | a0 M S A Lang! -8
;. Projectiiew x 1Pagel | Protocols | Tags | ZMobilepagﬂ/ Scheduler* x]_
- 4=
gr-sry AN A
o B 'Fﬁ Pages L I Name | Type | Schedule | Action Priori
é B 1: Pagel Schedule1 High Resolution Every 100 msec Medium
= ¥ Dialogs
il Templates
-~ T web b

Select the target from the drop-down list and click ‘Download” to deploy the project:

ID No. THW-xx - REV. 0.0

©2018 EXOR International S.p.A. - Subject to change without
notice 48

X =XON

m Download to Target ? >

Ready to download

127.0.0.1 [-]1® Close

7 advanced [A HMI43ad@192.168.1.38 —
[A HML6814@192.168.1.203 .
[R ROUTER8c1b@192.168.1.224 I
[§ -exorNsO1kt@172.16.0.2:8585

Advanced SettingL\s

Open your favorite web browser and enter the IP address and port you selected when you
downloaded the project (in the above screenshot 172.16.0.2:8585).
You will be asked to provide login credentials: default values are
Username: admin
Password: admin
You should now see a page with the incrementing counter

@ Projectl X +

= C' © Non sicuro | 172.16.0. ject1/web/we 1.htm T In incognito @

% Bookmarks @ OneDrive for Busin... |]

2700

TET =T = =

2]

el

TS OEETNT VT SO QUTCR STEr T Jure =

ID No. THW-xx - REV. 0.0
©2018 EXOR International S.p.A. - Subject to change without
notice 49

X =XON

HongKe e LS
. . . Hﬂ- hkaco.com SR
FEFMER? iBBidsales@hkaco.comBXEFHA(] | EBiE: 400-999-3848
BB TN | AR | B8 RN | Fa%e | EX | BeEB | VR | FE | &9 | 2B

ID No. THW-xx - REV. 0.0
©2018 EXOR International S.p.A. - Subject to change without
notice

50

